A260665 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the generalized pattern 12-3; triangle T(n,k), n>=0, 0<=k<=(n-1)*(n-2)/2-[n=0], read by rows.
1, 1, 2, 5, 1, 15, 7, 1, 1, 52, 39, 13, 12, 2, 1, 1, 203, 211, 112, 103, 41, 24, 17, 5, 2, 1, 1, 877, 1168, 843, 811, 492, 337, 238, 122, 68, 39, 28, 8, 5, 2, 1, 1, 4140, 6728, 6089, 6273, 4851, 3798, 2956, 1960, 1303, 859, 594, 314, 204, 110, 64, 43, 17, 8, 5, 2, 1, 1
Offset: 0
Examples
T(4,1) = 7: 1324, 1342, 2134, 2314, 2341, 3124, 4123. T(4,2) = 1: 1243. T(4,3) = 1: 1234. T(5,3) = 12: 12534, 12543, 13245, 13425, 13452, 21345, 23145, 23415, 23451, 31245, 41235, 51234. T(5,4) = 2: 12435, 12453. T(5,5) = 1: 12354. T(5,6) = 1: 12345. Triangle T(n,k) begins: 0 : 1; 1 : 1; 2 : 2; 3 : 5, 1; 4 : 15, 7, 1, 1; 5 : 52, 39, 13, 12, 2, 1, 1; 6 : 203, 211, 112, 103, 41, 24, 17, 5, 2, 1, 1; 7 : 877, 1168, 843, 811, 492, 337, 238, 122, 68, 39, 28, 8, 5, 2, 1, 1;
Links
- Alois P. Heinz, Rows n = 0..50, flattened
- A. Claesson and T. Mansour, Counting occurrences of a pattern of type (1,2) or (2,1) in permutations, arXiv:math/0110036 [math.CO], 2001
Crossrefs
Programs
-
Maple
b:= proc(u, o) option remember; `if`(u+o=0, 1, add(b(u-j, o+j-1), j=1..u)+ add(expand(b(u+j-1, o-j)*x^(o-j)), j=1..o)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)): seq(T(n), n=0..10);
-
Mathematica
b[u_, o_] := b[u, o] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1], {j, 1, u}] + Sum[Expand[b[u + j - 1, o - j]*x^(o - j)], {j, 1, o}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0] ]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)
Formula
Sum_{k>0} k * T(n,k) = A001754(n).
Comments