cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260668 Number of binary words of length n such that for every prefix the number of occurrences of subword 101 is larger than or equal to the number of occurrences of subword 010.

Original entry on oeis.org

1, 2, 4, 7, 13, 24, 45, 84, 158, 298, 566, 1079, 2066, 3966, 7635, 14730, 28484, 55188, 107130, 208294, 405594, 790812, 1543766, 3016923, 5901858, 11556244, 22647431, 44418613, 87182680, 171234318, 336532357, 661788956, 1302124526, 2563365624, 5048704640
Offset: 0

Views

Author

Alois P. Heinz, Nov 14 2015

Keywords

Examples

			a(5) = 2^5 - 8 = 24: 00000, 00001, 00011, 00110, 00111, 01100, 01101, 01110, 01111, 10000, 10001, 10011, 10100, 10101, 10110, 10111, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111. These 8 words are not counted: 00010, 00100, 00101, 01000, 01001, 01010, 01011, 10010.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t, c) option remember; `if`(c<0, 0, `if`(n=0, 1,
          b(n-1, [2, 4, 6, 4, 6, 4, 6][t], c-`if`(t=5, 1, 0))+
          b(n-1, [3, 5, 7, 5, 7, 5, 7][t], c+`if`(t=6, 1, 0))))
        end:
    a:= n-> b(n, 1, 0):
    seq(a(n), n=0..40);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<6, [1, 2, 4, 7, 13, 24][n+1],
          ((680+1441*n-444*n^2+35*n^3)        *a(n-1)
           -(4*(-112+625*n-179*n^2+14*n^3))   *a(n-2)
           +(2*(1521-656*n+63*n^2))           *a(n-3)
           +(2*(-9442+5295*n-947*n^2+56*n^3)) *a(n-4)
           -(4*(-6721+3413*n-591*n^2+35*n^3)) *a(n-5)
           +(4*(2*n-11))*(7*n^2-79*n+254)     *a(n-6)
            )/((n+1)*(7*n^2-93*n+340)))
        end:
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, t_, c_] := b[n, t, c] = If[c < 0, 0, If[n == 0, 1,
       b[n - 1, {2, 4, 6, 4, 6, 4, 6}[[t]], c - If[t == 5, 1, 0]] +
       b[n - 1, {3, 5, 7, 5, 7, 5, 7}[[t]], c + If[t == 6, 1, 0]]]];
    a[n_] := b[n, 1, 0];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Sep 16 2023, after Alois P. Heinz *)