A260668 Number of binary words of length n such that for every prefix the number of occurrences of subword 101 is larger than or equal to the number of occurrences of subword 010.
1, 2, 4, 7, 13, 24, 45, 84, 158, 298, 566, 1079, 2066, 3966, 7635, 14730, 28484, 55188, 107130, 208294, 405594, 790812, 1543766, 3016923, 5901858, 11556244, 22647431, 44418613, 87182680, 171234318, 336532357, 661788956, 1302124526, 2563365624, 5048704640
Offset: 0
Keywords
Examples
a(5) = 2^5 - 8 = 24: 00000, 00001, 00011, 00110, 00111, 01100, 01101, 01110, 01111, 10000, 10001, 10011, 10100, 10101, 10110, 10111, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111. These 8 words are not counted: 00010, 00100, 00101, 01000, 01001, 01010, 01011, 10010.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, t, c) option remember; `if`(c<0, 0, `if`(n=0, 1, b(n-1, [2, 4, 6, 4, 6, 4, 6][t], c-`if`(t=5, 1, 0))+ b(n-1, [3, 5, 7, 5, 7, 5, 7][t], c+`if`(t=6, 1, 0)))) end: a:= n-> b(n, 1, 0): seq(a(n), n=0..40); # second Maple program: a:= proc(n) option remember; `if`(n<6, [1, 2, 4, 7, 13, 24][n+1], ((680+1441*n-444*n^2+35*n^3) *a(n-1) -(4*(-112+625*n-179*n^2+14*n^3)) *a(n-2) +(2*(1521-656*n+63*n^2)) *a(n-3) +(2*(-9442+5295*n-947*n^2+56*n^3)) *a(n-4) -(4*(-6721+3413*n-591*n^2+35*n^3)) *a(n-5) +(4*(2*n-11))*(7*n^2-79*n+254) *a(n-6) )/((n+1)*(7*n^2-93*n+340))) end: seq(a(n), n=0..40);
-
Mathematica
b[n_, t_, c_] := b[n, t, c] = If[c < 0, 0, If[n == 0, 1, b[n - 1, {2, 4, 6, 4, 6, 4, 6}[[t]], c - If[t == 5, 1, 0]] + b[n - 1, {3, 5, 7, 5, 7, 5, 7}[[t]], c + If[t == 6, 1, 0]]]]; a[n_] := b[n, 1, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Sep 16 2023, after Alois P. Heinz *)