A260680 Peaceable coexisting armies of queens: number of inequivalent configurations with maximum number of queens as given in A250000.
1, 1, 1, 10, 3, 35, 19, 71, 18, 380
Offset: 1
Examples
For n = 3, a(3) = 1 because the following solution is unique up to equivalence: ----- |W..| |...| |.B.| ----- From _Rob Pratt_ in A250000, Nov 30 2014 thru Jul 29 2015: (Start) n=4: ---------------------------------------------------------- |..B.||.B..||.B..||....||.BB.||..B.||...W||..B.|..B.|..W.| |....||.B..||...B||.B.B||....||.B..||.B..||...B|B...|B...| |...B||....||....||....||....||...W||..B.||.W..|...W|...B| |WW..||W.W.||W.W.||W.W.||W..W||W...||W...||W...|.W..|.W..| ---------------------------------------------------------- n=5: --------------------- |W...W||..B.B||.W.W.| |..B..||W....||..W..| |.B.B.||..B.B||B...B| |..B..||W....||..W..| |W...W||.W.W.||B...B| --------------------- (End) From _Rob Pratt_, Mar 18 2019, additional solution for n=6 (not covered in attached pdf): -------- |....W.| |...W.W| |B.....| |B.B...| |....WW| |B.B...| --------
Links
- Luca Petrone, Graphic illustrations of a(6) and a(7)
- Rob Pratt, Solutions for n = 3
- Rob Pratt, Solutions for n = 4
- Rob Pratt, Solutions for n = 5
- Rob Pratt, Solutions for n = 6
- Rob Pratt, Solutions for n = 7
- Rob Pratt, Solutions for n = 8
- Rob Pratt, Solutions for n = 9
- Rob Pratt, Solutions for n = 10
Crossrefs
Cf. A250000.
Extensions
a(6)-a(8) from Luca Petrone, Mar 11 2016
a(4), a(6), and a(8) corrected by Rob Pratt, Mar 18 2019
a(9) and a(10) from Rob Pratt, Mar 19 2019
Comments