cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260682 Löschian numbers (A003136) of the form 6*k+1.

Original entry on oeis.org

1, 7, 13, 19, 25, 31, 37, 43, 49, 61, 67, 73, 79, 91, 97, 103, 109, 121, 127, 133, 139, 151, 157, 163, 169, 175, 181, 193, 199, 211, 217, 223, 229, 241, 247, 259, 271, 277, 283, 289, 301, 307, 313, 325, 331, 337, 343, 349, 361, 367, 373, 379, 397, 403, 409, 421, 427, 433, 439, 457, 463, 469, 475, 481, 487, 499
Offset: 1

Views

Author

Joerg Arndt, Nov 15 2015

Keywords

Comments

Odd terms of A202822, which lists Löschian numbers of the form 3*k+1. - Altug Alkan, Nov 15 2015

Crossrefs

Programs

  • Haskell
    a260682 n = a260682_list !! (n-1)
    a260682_list = filter ((== 1) . flip mod 6) a003136_list
    -- Reinhard Zumkeller, Nov 16 2015
  • Mathematica
    nn = 25; Select[Union[Flatten[Table[x^2 + x*y + y^2, {x, 0, nn}, {y, 0, x}]]], Mod[#, 6] == 1 && # <= nn^2&] (* Jean-François Alcover, Jul 21 2018, after T. D. Noe *)
  • PARI
    is(n)=(n%6==1)&&#bnfisintnorm(bnfinit(z^2+z+1), n);
    select(n->is(n), vector(500,j,j))
    
  • PARI
    x='x+O('x^500); p=eta(x)^3/eta(x^3); for(n=0, 499, if(polcoeff(p, n) != 0 && n%6==1, print1(n, ", "))) \\ Altug Alkan, Nov 15 2015
    
  • PARI
    isok(n) = if( n<1 || (n%3 == 0), 0, 0 != sumdiv( n, d, kronecker( -3, d))) && n%2==1;
    for(n=0, 500, if(isok(n), print1(n", "))) \\ Altug Alkan, Nov 15 2015
    
  • PARI
    list(lim)=my(v=List(), y, t); for(x=0, sqrtint(lim\3), my(y=x, t); while((t=x^2+x*y+y^2)<=lim, if(t%6==1, listput(v, t)); y++)); Set(v) \\ Charles R Greathouse IV, Jul 05 2017