cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260687 Triangular array with n-th row giving coefficients of polynomial Product_{k = 2..n} (k + n*t) for n >= 1.

Original entry on oeis.org

1, 2, 2, 6, 15, 9, 24, 104, 144, 64, 120, 770, 1775, 1750, 625, 720, 6264, 20880, 33480, 25920, 7776, 5040, 56196, 250096, 571095, 708295, 453789, 117649, 40320, 554112, 3127040, 9433088, 16486400, 16744448, 9175040, 2097152, 362880, 5973264, 41229324, 156498804
Offset: 1

Views

Author

Peter Bala, Nov 16 2015

Keywords

Comments

Related to A220883 and A251592.

Examples

			Triangle begins
...1
...2      2
...6     15       9
..24    104     144      64
.120    770    1775    1750     625
.720   6264   20880   33480   25920    7776
5040  56196  250096  571095  708295  453789  117649
...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998

Crossrefs

A000142 (column 0), A000169 (main diagonal), A006675 (column 1). Cf. A001700, A025174, A056856, A163456, A220883, A224274, A251592.

Programs

  • Maple
    seq(seq(coeff(mul(n*t + k, k = 2 .. n), t, i), i = 0..n-1), n = 1..10);

Formula

E.g.f. (with constant term 1 included): A(x,t) = [ 1/x*Revert( x*(1 - x)^t ) ]^(1/t) = Sum_{n >= 0} 1/(n*t + 1)*binomial(n*t + n,n)*x^n = 1 + x + (2 + 2*t)*x^2/2! + (2 + 3*t)*(3 + 3*t)*x^3/3! + (2 + 4*t)*(3 + 4*t)*(4 + 4*t)*x^4/4! + ..., where Revert denotes the series reversion operator with respect to x.
In the notation of the Bala link, A(x,t) = I^t(1/(1 - x)) where I^t is a fractional inversion operator.
A(x,t) = B_(1+t)(x), where B_t(x) is the e.g.f. for A251592 and is the generalized binomial series of Lambert. See Graham et al., Section 5.4 and Section 7.5.
A(x,t)^m = Sum_{n >= 0} m/(n*t + m)*binomial(n*t + n + m - 1,n)*x^n = 1 + m*x + m*(2*t + m + 1)*x^2/2! + m*(3*t + m + 1)*(3*t + m + 2)*x^3/3! + m*(4*t + m + 1)*(4*t + m + 2)*(4*t + m + 3)*x^4/4! + ....
A(x,t)^t = 1 + t*x + t(1 + 3*t)*x^2/2! + t*(1 + 4*t)*(2 + 4*t)*x^3/3! + t*(1 + 5*t)*(2 + 5*t)*(3 + 5*t)*x^4/4! + ... is the e.g.f for A220883 with an extra constant term 1 and an extra factor of t included.
t*log( A(x,t) ) = t*x + t*(1 + 2*t)*x^2/2! + t*(1 + 3*t)*(2 + 3*t)*x^3/3! + t*(1 + 4*t)*(2 + 4*t)*(3 + 4*t)*x^4/4! + ... is the e.g.f for A056856.
For n = 1,2,3,..., the sequence [x^n] A(x,t)^n = [1, (2*t + 3), (3*t + 4)*(3*t + 5)/2!, (4*t + 5)*(4*t + 6)*(4*t + 7)/3!, ...]. This sequence has the following specializations:
t = 0: [1, 3, 10, 35, 126, ...] = A001700 (with different offset).
t = 1: [1, 5, 28, 165, 1001, ...] = A025174.
t = 2: [1, 7, 55, 455, 3876, ...] = A224274.
t = 3: [1, 9, 91, 969, 10626, ...] = A163456.