cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A251592 Triangle of coefficients of polynomials P(n,t) related to the Mittag-Leffler function, where P(n,t) = Product_{k=0..n-2} n*t-k.

Original entry on oeis.org

1, 0, 2, 0, -3, 9, 0, 8, -48, 64, 0, -30, 275, -750, 625, 0, 144, -1800, 7560, -12960, 7776, 0, -840, 13426, -77175, 204085, -252105, 117649, 0, 5760, -112896, 831488, -3010560, 5734400, -5505024, 2097152, 0, -45360, 1058508, -9573228
Offset: 1

Views

Author

Jean-François Alcover, Dec 05 2014

Keywords

Comments

Second column (unsigned) 2, 3, 8, 30, 144, ... is A001048.
Diagonal 1, 2, 9, 64, 625, 7776, ... is A000169.

Examples

			Triangle begins :
  1;
  0,   2;
  0,  -3,     9;
  0,   8,   -48,   64;
  0, -30,   275, -750,    625;
  0, 144, -1800, 7560, -12960, 7776;
  ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998

Crossrefs

Cf. A000169, A001048, A156136, A000108 (B_2(x)), A001764 (B_3(x)), A002293 (B_4(x)), A002294 (B_5(x)), A002295 (B_6(x)), A002296 (B_7(x)), A007556 (B_8(x)), A062994 (B_9(x)), A059968 (B_10(x)), A230388 (B_11(x)), A139526, A260687.

Programs

  • Mathematica
    P[n_, t_] := Product[n*t - k, {k, 0, n-2}]; row[n_] := CoefficientList[P[n, t], t]; Table[row[n], {n, 1, 10}] // Flatten

Formula

P(n,t) = (n-1)!*binomial(n*t, n-1).
From Peter Bala, Nov 15 2015: (Start)
E.g.f. (with constant term 1): B_t(x) = Sum_{n >= 0} 1/(n*t + 1)*binomial(n*t + 1,n)*x^n = 1 + x + 2*t*x^2/2! + 3*t(3*t - 1)*x^3/3! + 4*t*(4*t - 1)*(4*t - 2)*x^4/4! + ... is the generalized binomial series of Lambert. See Graham et al., Section 5.4 and Section 7.5.
In the notation of the Bala link, B_t(x) = I^t(1 + x) where I^t is a fractional inversion operator. B_(1+t)(x) is the e.g.f. for A260687.
B_t(x) = 1 + x*B_t(x)^t.
For complex r, B_t(x)^r = Sum_{n >= 0} r/(n*t + r)*binomial(n*t + r,n)*x^n.
log (B_t(x)) = Sum_{n >= 1} 1/(n*t)*binomial(n*t,n)*x^n.
B_2(x) is the o.g.f. for the Catalan numbers A000108. B_t(x) for t = 3,4,5,... gives the o.g.f. for various Fuss-Catalan sequences. See the cross references. (End)

A139526 Triangle A061356 read right to left.

Original entry on oeis.org

1, 1, 2, 1, 6, 9, 1, 12, 48, 64, 1, 20, 150, 500, 625, 1, 30, 360, 2160, 6480, 7776, 1, 42, 735, 6860, 36015, 100842, 117649, 1, 56, 1344, 17920, 143360, 688128, 1835008, 2097152, 1, 72, 2268, 40824, 459270, 3306744, 14880348, 38263752, 43046721, 1, 90, 3600, 84000, 1260000, 12600000, 84000000, 360000000, 900000000, 1000000000
Offset: 2

Views

Author

Alford Arnold, Apr 24 2008

Keywords

Comments

Related to the two Appell sequences the Bernoulli polynomials B(n,x) and their umbral compositional inverses (cf. A074909) Up(n,x) = [(x+1)^(n+1)-x^(n+1)] / (n+1). With offset 0, the row polynomials of this entry P(n,x) = (Up(n,0))^(-n) * [x + Up(n,0)]^n = (n+1)^n * [x + 1/(n+1)]^n. Compare to the Abel polynomials of A061356, which are also an Appell sequence. - Tom Copeland, Nov 14 2014

Examples

			(1) times (1) = (1)
(1 1) * (1 2) = (1 2)
(1 2 1 ) * (1 3 9) = (1 6 9)
(1 3 3 1) * (1 4 16 64) = (1 12 48 64)
etc.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA. Second ed. 1994.
  • Peter D. Schumer (2004), Mathematical Journeys, page 168, Proposition 16.1 (c)

Crossrefs

Cf. A000272 (row sums), A061356 (row reverse), A028421, A074909, A000169 (main diagonal), A251592, A260687.

Programs

  • Maple
    A061356 := proc(n,k) binomial(n-2,k-1)*(n-1)^(n-k-1); end: A139526 := proc(n,k) A061356(n,n-k-1) ; end: for n from 2 to 14 do for k from 0 to n-2 do printf("%d,",A139526(n,k)) ; od: od: # R. J. Mathar, May 22 2008
  • Mathematica
    T[n_, k_] := (n - 1)^k*Binomial[n - 2, n - k - 2];
    Table[T[n, k], {n, 2, 11}, {k, 0, n - 2}] // Flatten (* Jean-François Alcover, Jun 13 2023 *)
  • PARI
    for(n=2,12,forstep(k=n-1,1,-1,print1(binomial(n-2, k-1)*(n-1)^(n-k-1)","))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 10 2008

Formula

E.g.f. (with offset 1) Sum_{n >= 1} (1 + n*t)^(n-1)*x^n/n! = x + (1 + 2*t)*x^2/2! + (1 + 6*t + 9*t^2)*x^3/3! + .... For properties of this function see Graham et al., equations 5.60, 5.61 and 7.71. The e.g.f. is the series reversion with respect to x of the function log(1 + x)/(1 + x)^t, which is the e.g.f. for a signed version of A028421. - Peter Bala, Jul 18 2013
From Peter Bala, Nov 16 2015: (Start)
E.g.f. with offset 0 and constant term 1: A(x,t) = ( Sum_{n >= 0} (n + 1)^(n-1)*t^n*x^n/n! )^(1/t). This is the generalized exponential series E_t(x) in the terminology of Graham et al., Section 5.4.
A(x,t)^m = 1 + Sum_{n >= 1} m*(m + n*t)^(n-1)*x^n/n!.
log(A(x,t)) = Sum_{n >= 1} (n*t)^(n-1)*x^n/n! = 1/t*T(t*x), where T(z) is Euler's tree function. See A000169.
A(x,t) = ( 1/x* Revert( x*exp(-x*t)) )^(1/t), where Revert is the series reversion operator with respect to x.
In the notation of the Bala link the e.g.f. is I^t(e^x), where I^t is a fractional series inversion operator. Cf. A251592, which has o.g.f. I^t(1 + x), and A260687, which has o.g.f. I^t(1/(1 - x)). (End)

Extensions

More terms from R. J. Mathar and Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008

A220883 Triangle read by rows: row n gives coefficients of expansion of Product_{k = 1..n-1} ((n + 1)*x + k), starting with lowest power.

Original entry on oeis.org

1, 1, 3, 2, 12, 16, 6, 55, 150, 125, 24, 300, 1260, 2160, 1296, 120, 1918, 11025, 29155, 36015, 16807, 720, 14112, 103936, 376320, 716800, 688128, 262144, 5040, 117612, 1063692, 4934601, 12859560, 19013778, 14880348, 4782969, 40320, 1095840, 11812400, 67284000, 224490000, 453600000, 546000000, 360000000, 100000000, 362880, 11292336, 141896700, 963218080, 3943187325, 10190179923, 16741251450, 16953838770, 9646149645, 2357947691
Offset: 1

Views

Author

N. J. A. Sloane, Dec 29 2012

Keywords

Comments

Related to Stirling numbers A008275, A008277.

Examples

			Triangle begins:
    1
    1     3
    2    12     16
    6    55    150    125
   24   300   1260   2160   1296
  120  1918  11025  29155  36015  16807
  720 14112 103936 376320 716800 688128 262144
  ...
		

Crossrefs

Programs

  • Maple
    seq(seq(coeff(mul((n+1)*t + k, k = 1..n-1), t, i), i = 0..n-1), n = 1 .. 10); # Peter Bala, Nov 16 2015
    # Alternative:
    T := (n, k) -> (-1)^(n-k)*(n+1)^(k-1)*Stirling1(n, k):
    seq(print(seq(T(n, k), k=1..n)), n=1..8);
    # Peter Luschny, Mar 20 2024
  • Mathematica
    A220883[n_, k_] := (-1)^(n-k)*(n+1)^(k-1)*StirlingS1[n, k];
    Table[A220883[n, k], {n, 10}, {k, n}] (* Paolo Xausa, Mar 19 2024 *)

Formula

From Peter Bala, Nov 16 2015: (Start)
E.g.f.: A(x,t) = x + (1 + 3*t)*x^2/2! + (1 + 4*t)*(2 + 4*t)*x^3/3! + ....
The function F(x,t) := 1 + t*A(x,t) has several nice properties:
F(x,t) = 1/x*Revert( x*(1 - x)^t ) = 1 + t*x + t*(1 + 3*t)*x^2/2! + t*(2 + 12*t + 16*t^2)*x^3/3! + ..., where Revert denotes the series reversion operator with respect to x.
F(x,t)*(1 - x*F(x,t))^t = 1.
F(x,t)^m = 1 + m*t*x + m*t*((m + 2)*t + 1)*x^2/2! + m*t*((m + 3)*t + 1)*((m + 3)*t + 2)*x^3/3! + m*t*((m + 4)*t + 1)*((m + 4)*t + 2)*((m + 4)*t + 3)*x^4/4! + ....
Log(F(x,t)) = t*x + t*(1 + 2*t)*x^2/2! + t*(1 + 3*t)*(2 + 3*t)*x^3/3! + t*(1 + 4*t)*(2 + 4*t)*(3 + 4*t)*x^4/4! + ... is the e.g.f for A056856.
F(x,t) = G(x,t)^t, where G(x,t) = 1 + x + (2 + 2*t)*x^2/2! + (2 + 3*t)*(3 + 3*t)*x^3/3! + (2 + 4*t)*(3 + 4*t)*(4 + 4*t)*x^4/4! + ... is the o.g.f. for A260687. (End)
T(n, k) = (-1)^(n-k)*(n+1)^(k-1)*Stirling1(n, k). - Peter Luschny, Mar 01 2021 [Corrected by Paolo Xausa, Mar 19 2024]
Showing 1-3 of 3 results.