cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260698 Practical numbers of the form p - 1 where p is a prime.

Original entry on oeis.org

1, 2, 4, 6, 12, 16, 18, 28, 30, 36, 40, 42, 60, 66, 72, 78, 88, 96, 100, 108, 112, 126, 150, 156, 162, 180, 192, 196, 198, 210, 228, 240, 256, 270, 276, 280, 306, 312, 330, 336, 348, 352, 378, 396, 400, 408, 420, 432, 448, 456, 460, 462, 486, 520, 522, 540, 546
Offset: 1

Views

Author

Frank M Jackson, Nov 16 2015

Keywords

Comments

Intersection of A005153 and A006093. - Michel Marcus, Nov 16 2015

Examples

			a(5)=12 as 12 is a practical number and 12+1=13 is prime. It is the 5th such practical number.
		

Crossrefs

Programs

  • Mathematica
    PracticalQ[n_] := Module[{f, p, e, prod = 1, ok = True}, If[n<1||(n>1&&OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e}=Transpose[f]; Do[If[p[[i]]>1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; Select[Table[Prime[n]-1, {n, 1, 200}], PracticalQ] (* using T. D. Noe's program A005153 *)
  • PARI
    is(n) = bittest(n, 0) && return(n==1); my(P=1); n && !for(i=2, #n=factor(n)~, n[1, i]>1+(P*=sigma(n[1, i-1]^n[2, i-1])) && return);
    forprime(p=2, 1000, if(is(p-1), print1(p-1", "))) \\ Altug Alkan, Nov 16 2015