A260699 a(2n+6) = a(2n) + 12*n + 20, a(2n+1) = (n+1)*(2*n+1), with a(0)=0, a(2)=2, a(4)=9.
0, 1, 2, 6, 9, 15, 20, 28, 34, 45, 53, 66, 76, 91, 102, 120, 133, 153, 168, 190, 206, 231, 249, 276, 296, 325, 346, 378, 401, 435, 460, 496, 522, 561, 589, 630, 660, 703, 734, 780, 813, 861, 896, 946, 982, 1035, 1073
Offset: 0
Examples
a(0) = 0, a(1) = 1*1 = 1, a(2) = 2, a(3) = 2*3 = 6, a(4) = 9, a(5) = 3*5 = 15, a(6) = a(0) + 12*0 + 20 = 20, etc.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1,0,0,1,-1,-1,1).
Programs
-
Magma
[n*(n+1)/2-(1+(-1)^n)*Floor(n/6+2/3)/2: n in [0..50]]; // Bruno Berselli, Nov 18 2015
-
Mathematica
LinearRecurrence[{1, 1, -1, 0, 0, 1, -1, -1, 1}, {0, 1, 2, 6, 9, 15, 20, 28, 34}, 50] (* Bruno Berselli, Nov 18 2015 *)
-
Sage
[n*(n+1)/2-(1+(-1)^n)*floor(n/6+2/3)/2 for n in (0..50)] # Bruno Berselli, Nov 18 2015
Formula
G.f.: x*(1 + x + 3*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + x^6)/((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9).
a(2*k+1) = A000217(2*k+1) by definition; for even indices:
a(6*k) = 2*k*(9*k + 1),
a(6*k+2) = 2*(9*k^2 + 7*k + 1),
a(6*k+4) = 18*k^2 + 26*k + 9.
a(n) = n*(n + 1)/2 - (1 + (-1)^n)*floor(n/6 + 2/3)/2. [Bruno Berselli, Nov 18 2015]
Extensions
Edited by Bruno Berselli, Nov 17 2015
Comments