cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260699 a(2n+6) = a(2n) + 12*n + 20, a(2n+1) = (n+1)*(2*n+1), with a(0)=0, a(2)=2, a(4)=9.

Original entry on oeis.org

0, 1, 2, 6, 9, 15, 20, 28, 34, 45, 53, 66, 76, 91, 102, 120, 133, 153, 168, 190, 206, 231, 249, 276, 296, 325, 346, 378, 401, 435, 460, 496, 522, 561, 589, 630, 660, 703, 734, 780, 813, 861, 896, 946, 982, 1035, 1073
Offset: 0

Views

Author

Paul Curtz, Nov 16 2015

Keywords

Comments

Sequence extended to left:
..., 36, 29, 21, 16, 10, 6, 3, 1, 0, 0, 1, 2, 6, 9, 15, 20, 28, 34, ...,
where 0, 1, 3, 6, 10, 16, 21, 29, 36, 46, ... is A260708.
After 2, if a(n) is prime then n == 4 (mod 6).
a(n) is a square for n = 0, 1, 4, 49, 52, 192, 1681, 4948, 57121, 60388, 221952, 1940449, 5710372, ...

Examples

			a(0) = 0,
a(1) = 1*1 = 1,
a(2) = 2,
a(3) = 2*3 = 6,
a(4) = 9,
a(5) = 3*5 = 15,
a(6) = a(0) + 12*0 + 20 = 20, etc.
		

Crossrefs

Programs

  • Magma
    [n*(n+1)/2-(1+(-1)^n)*Floor(n/6+2/3)/2: n in [0..50]]; // Bruno Berselli, Nov 18 2015
    
  • Mathematica
    LinearRecurrence[{1, 1, -1, 0, 0, 1, -1, -1, 1}, {0, 1, 2, 6, 9, 15, 20, 28, 34}, 50] (* Bruno Berselli, Nov 18 2015 *)
  • Sage
    [n*(n+1)/2-(1+(-1)^n)*floor(n/6+2/3)/2 for n in (0..50)] # Bruno Berselli, Nov 18 2015

Formula

G.f.: x*(1 + x + 3*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + x^6)/((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9).
a(2*k+1) = A000217(2*k+1) by definition; for even indices:
a(6*k) = 2*k*(9*k + 1),
a(6*k+2) = 2*(9*k^2 + 7*k + 1),
a(6*k+4) = 18*k^2 + 26*k + 9.
a(n) = n*(n + 1)/2 - (1 + (-1)^n)*floor(n/6 + 2/3)/2. [Bruno Berselli, Nov 18 2015]

Extensions

Edited by Bruno Berselli, Nov 17 2015