A260745
Number of prime juggling patterns of period n using 3 balls.
Original entry on oeis.org
1, 3, 11, 36, 127, 405, 1409, 4561, 15559, 50294, 169537, 551001, 1835073, 5947516, 19717181, 63697526, 209422033, 676831026, 2208923853, 7112963260, 23127536979, 74225466424, 239962004807, 768695233371, 2473092566267, 7896286237030, 25316008015581, 80572339461372
Offset: 1
In siteswap notation, the prime juggling pattern(s) of length one is 3; of length two are 42, 51 and 60; of length three are 441, 522, 531, 450, 612, 630, 360, 711, 720, 801 and 900.
- Esther Banaian, Steve Butler, Christopher Cox, Jeffrey Davis, Jacob Landgraf and Scarlitte Ponce, Counting prime juggling patterns, arXiv:1508.05296 [math.CO], 2015.
- Jack Boyce, jprime program, 2024.
- Fan Chung and R. L. Graham, Primitive juggling sequences, American Mathematical Monthly 115 (2008), 185-194.
A260746
Number of prime juggling patterns of period n using 4 balls.
Original entry on oeis.org
1, 4, 19, 83, 391, 1663, 7739, 33812, 153575, 677901, 3075879, 13586581, 61458267, 272367077, 1228519987, 5456053443, 24547516939, 109153816505, 490067180301, 2180061001275, 9772927018285, 43467641569472
Offset: 1
In siteswap notation, the prime juggling pattern(s) of length one is 4; of length two are 53, 62, 71 and 80; of length three are (11)01, (12)00, 660, 750, (10)11, (10)20, 390, 831, 822, 471, 561, 741, 723, 633, 642, 552, 912, 930 and 480.
- Esther Banaian, Steve Butler, Christopher Cox, Jeffrey Davis, Jacob Landgraf and Scarlitte Ponce, Counting prime juggling patterns, arXiv:1508.05296 [math.CO], 2015.
- Jack Boyce, jprime program, 2024.
- Fan Chung and R. L. Graham, Primitive juggling sequences, American Mathematical Monthly 115 (2008), 185-194.
A260752
Number of prime juggling patterns of period n using 5 balls.
Original entry on oeis.org
1, 5, 29, 157, 901, 4822, 27447, 149393, 836527, 4610088, 25846123, 142296551, 799268609, 4426204933, 24808065829, 137945151360, 773962487261, 4310815784117, 24208263855765
Offset: 1
In siteswap notation, the prime juggling pattern(s) of length one is 5; of length two are 64, 73, 82, 91 and (10)0; of length three are (11)31, (11)22, 4(10)1, 3(12)0, (13)20, (13)11, 591, (10)23, (10)41, 960, 780, 663, 744, 753, 4(11)0, (12)12, (12)30, 771, 861, (15)00, 933, 942, 582, (10)50, 690, (14)01, 852, 834 and 672.
- Esther Banaian, Steve Butler, Christopher Cox, Jeffrey Davis, Jacob Landgraf and Scarlitte Ponce, Counting prime juggling patterns, arXiv:1508.05296 [math.CO], 2015.
- Jack Boyce, jprime program, 2024.
- Fan Chung and R. L. Graham, Primitive juggling sequences, American Mathematical Monthly 115 (2008), 185-194.
Showing 1-3 of 3 results.
Comments