cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260774 Certain directed lattice paths.

Original entry on oeis.org

1, 6, 33, 189, 1107, 6588, 39663, 240894, 1473147, 9058554, 55954395, 346934745, 2157989445, 13459891500, 84152389833, 527224251861, 3309194474451, 20804569738218, 130987600581699, 825796890644895, 5212349717906889, 32935490120006604, 208316726580941037
Offset: 0

Views

Author

N. J. A. Sloane, Jul 30 2015

Keywords

Comments

See Dziemianczuk (2014) for precise definition.

Crossrefs

Programs

  • Maple
    b:= proc(x, y) option remember; `if`([x, y]=[0$2], 1,
          `if`(x>0, add(b(x-1, y+j), j=-1..1), 0)+
          `if`(y>0, b(x, y-1), 0)+`if`(y<0, b(x, y+1), 0))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 21 2021
  • Mathematica
    b[x_, y_] := b[x, y] = If[{x, y} == {0, 0}, 1,
         If[x > 0, Sum[b[x - 1, y + j], {j, -1, 1}], 0] +
         If[y > 0, b[x, y - 1], 0] + If[y < 0, b[x, y + 1], 0]];
    a[n_] := b[n, 1];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, May 02 2022, after Alois P. Heinz *)

Formula

See Dziemianczuk (2014) Equation (33a) with m=1.
From Vaclav Kotesovec, Jul 15 2022: (Start)
Recurrence: (n+1)*(4*n - 3)*a(n) = 6*(4*n^2 - n - 1)*a(n-1) + 3*(n-1)*(4*n + 1)*a(n-2).
a(n) ~ (3 + 2*sqrt(3))^(n+1) / sqrt(6*Pi*n). (End)

Extensions

More terms from Lars Blomberg, Aug 01 2015