cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260779 Coefficients arising from expansion of 1/(2*P(u)) in powers of u, where P is the Weierstrass P-function.

Original entry on oeis.org

1, -72, 48384, -134120448, 1055796166656, -18987644270149632, 676784742282773397504, -43249455805185586718834688, 4599203617006025540525554139136, -768291761151281123722697889747566592, 192565676807771292904270021964021234663424
Offset: 0

Views

Author

N. J. A. Sloane, Aug 02 2015

Keywords

Comments

This is for the lemniscate case where g2=4, g3=0. - Michael Somos, Jul 10 2024

Crossrefs

Cf. A144849.

Programs

  • Maple
    A260779 := proc(n)
        option remember;
        if n = 0 then
            1;
        else
            a :=0 ;
            for r from 0 to n-1 do
                s := n-1-r ;
                if s >=0 and s <= n-1 then
                a := a+procname(r)*procname(s) *binomial(4*n,4*r+2) ;
                end if;
            end do:
            a*(-12) ;
        end if;
    end proc: # R. J. Mathar, Aug 03 2015
  • Mathematica
    Block[{a}, a[n_] := If[n < 1, Boole[n == 0], Sum[Binomial[4 n, 4 j + 2] a[j] a[n - 1 - j], {j, 0, n - 1}]]; Array[(-12)^#*a[#] &, 11, 0]] (* Michael De Vlieger, Nov 20 2019, after Harvey P. Dale at A144849 *)
    a[ n_] := If[n<0, 0, With[{m = 4*n+2}, m!/2*SeriesCoefficient[ 1/WeierstrassP[u, {4, 0}], {u, 0, m}]]]; (* Michael Somos, Jul 10 2024 *)

Formula

Hurwitz (Eq. (84)) gives a recurrence.
a(n) = (-12)^n * A144849(n). - R. J. Mathar, Aug 03 2015