A260779 Coefficients arising from expansion of 1/(2*P(u)) in powers of u, where P is the Weierstrass P-function.
1, -72, 48384, -134120448, 1055796166656, -18987644270149632, 676784742282773397504, -43249455805185586718834688, 4599203617006025540525554139136, -768291761151281123722697889747566592, 192565676807771292904270021964021234663424
Offset: 0
Links
- A. Hurwitz, Über die Entwicklungskoeffizienten der lemniskatischen Funktionen, Math. Ann., 51 (1899), 196-226; Mathematische Werke. Vols. 1 and 2, Birkhäuser, Basel, 1962-1963, see Vol. 2, No. LXVII. [Annotated scanned copy] See Eq. (16) and Table III.
- Tanay Wakhare and Christophe Vignat, Taylor coefficients of the Jacobi theta3(q) function, arXiv:1909.01508 [math.NT], 2019.
Crossrefs
Cf. A144849.
Programs
-
Maple
A260779 := proc(n) option remember; if n = 0 then 1; else a :=0 ; for r from 0 to n-1 do s := n-1-r ; if s >=0 and s <= n-1 then a := a+procname(r)*procname(s) *binomial(4*n,4*r+2) ; end if; end do: a*(-12) ; end if; end proc: # R. J. Mathar, Aug 03 2015
-
Mathematica
Block[{a}, a[n_] := If[n < 1, Boole[n == 0], Sum[Binomial[4 n, 4 j + 2] a[j] a[n - 1 - j], {j, 0, n - 1}]]; Array[(-12)^#*a[#] &, 11, 0]] (* Michael De Vlieger, Nov 20 2019, after Harvey P. Dale at A144849 *) a[ n_] := If[n<0, 0, With[{m = 4*n+2}, m!/2*SeriesCoefficient[ 1/WeierstrassP[u, {4, 0}], {u, 0, m}]]]; (* Michael Somos, Jul 10 2024 *)
Formula
Hurwitz (Eq. (84)) gives a recurrence.
a(n) = (-12)^n * A144849(n). - R. J. Mathar, Aug 03 2015
Comments