A260798 Number of partitions of p=prime(n) into aliquant parts (i.e., parts that do not divide p, meaning any part except 1 and p).
0, 0, 1, 3, 13, 23, 65, 104, 252, 846, 1237, 3659, 7244, 10086, 19195, 48341, 116599, 155037, 356168, 609236, 792905, 1716485, 2832213, 5887815, 15116625, 23911833, 29983570, 46873052, 58443395, 90374471, 394641602, 593224103, 1082063335, 1318608063, 3477935702, 4207389268, 7398721009, 12885091292, 18555597522, 31831360281, 54145147464, 64517020844
Offset: 1
Keywords
Examples
For n=4, the fourth prime is 7, and we see the three partitions 7=2+5=2+2+3=3+4, so a(4)=3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..2000 (first 781 terms from Reinhard Zumkeller)
Programs
-
Haskell
import Data.MemoCombinators (memo2, integral) a260798 n = a260798_list !! (n-1) a260798_list = map (subtract 1 . pMemo 2) a000040_list where pMemo = memo2 integral integral p p _ 0 = 1 p k m | m < k = 0 | otherwise = pMemo k (m - k) + pMemo (k + 1) m -- Reinhard Zumkeller, Aug 09 2015
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=2, 1-irem(n, 2), `if`(i<2, 0, b(n, i-1)+b(n-i, min(i, n-i)))) end: a:= n-> (p-> b(p, p-1))(ithprime(n)): seq(a(n), n=1..45); # Alois P. Heinz, Mar 11 2018
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0 || i == 2, 1 - Mod[n, 2], If[i < 2, 0, b[n, i - 1] + b[n - i, Min[i, n - i]]]]; a[n_] := b[#, # - 1]&[Prime[n]]; Table[a[n], {n, 1, 45}] (* Jean-François Alcover, May 20 2018, after Alois P. Heinz *)