cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260832 a(n) = numerator(Jtilde2(n)).

Original entry on oeis.org

1, 3, 41, 147, 8649, 32307, 487889, 1856307, 454689481, 1748274987, 26989009929, 104482114467, 6488426222001, 25239009088827, 393449178700161, 1535897056631667, 1537112996582116041, 6016831929058214523, 94316599529950360769, 369994845516850143483, 23244865440911268112681
Offset: 0

Views

Author

Michel Marcus, Nov 17 2015

Keywords

Comments

Jtilde2(n) are Apéry-like rational numbers that arise in the calculation of zetaQ(2), the spectral zeta function for the non-commutative harmonic oscillator using a Gaussian hypergeometric function.

Crossrefs

Cf. A056982 (denominators), A013661 (zeta(2)), A264541 (Jtilde3).
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Maple
    a := n -> numer(simplify(hypergeom([1/2, 1/2, -n], [1, 1], 1))):
    seq(a(n), n = 0..20); # Peter Luschny, Dec 08 2022
  • Mathematica
    Numerator[Table[Sum[ (-1)^k*Binomial[-1/2, k]^2*Binomial[n, k], {k, 0, n}], {n,0,50}]] (* G. C. Greubel, Feb 15 2017 *)
  • PARI
    a(n) = numerator(sum(k=0, n, (-1)^k*binomial(-1/2,k)^2*binomial(n, k)));
    
  • PARI
    a(n) = numerator(sum(k=0, n, binomial(2*k, k)*binomial(4*k, 2*k)* binomial(2*(n-k),n-k)*binomial(4*(n-k),2*(n-k))) / (2^(4*n)* binomial(2*n,n)));

Formula

Jtilde2(n) = J2(n)/J2(0) with J2(0) = 3*zeta(2) (normalization).
And 4n^2*J2(n) - (8n^2-8n+3)*J2(n-1) + 4(n-1)^2*J2(n-2) = 0 with J2(0) = 3*zeta(2) and J2(1) = 9*zeta(2)/4.
Jtilde2(n) = Sum_{k=0..n} (-1)^k*binomial(-1/2,k)^2*binomial(n,k).
Jtilde2(n) = Sum_{k=0..n} binomial(2*k,k)*binomial(4*k,2*k)*binomial(2*(n-k),n-k)*binomial(4*(n-k),2*(n-k))/(2^(4*n)*binomial(2*n,n)).
From Andrey Zabolotskiy, Oct 04 2016 and Dec 08 2022: (Start)
Jtilde2(n) = Integral_{ x >= 0 } (L_n(x))^2*exp(-x)/sqrt(Pi*x) dx, where L_n(x) is the Laguerre polynomial (A021009).
G.f. of Jtilde2(n): 2F1(1/2,1/2;1;z/(z-1))/(1-z).
Jtilde2(n) = A143583(n) / 16^n. (End)
a(n) = numerator(hypergeom([1/2, 1/2, -n], [1, 1], 1)). - Peter Luschny, Dec 08 2022