A260848 Triangle read by rows: T(n,g) = number of general immersions of a circle with n crossings in a surface of arbitrary genus g (the circle is not oriented, the surface is oriented).
1, 2, 1, 6, 6, 1, 21, 64, 36, 0, 99, 559, 772, 108, 0, 588, 5656, 14544, 7222, 0, 0, 3829, 56528, 246092, 277114, 34680, 0, 0, 27404, 581511, 3900698, 8180123, 3534038, 0, 0, 0, 206543, 6020787, 58838383, 203964446, 198551464, 22521600, 0, 0, 0
Offset: 1
Examples
The transposed triangle starts: 1 2 6 21 99 588 3829 27404 206543 1 6 64 559 5656 56528 581511 6020787 1 36 772 14544 246092 3900698 58838383 0 108 7222 277114 8180123 203964446 0 0 34680 3534038 198551464 0 0 0 22521600 0 0 0 0 0
Links
- R. Coquereaux and J.-B. Zuber, Maps, immersions and permutations, arXiv:1507.03163 [math.CO], 2015, Table 9.
Crossrefs
Programs
-
Magma
/* Example n := 6 */ n:=6; n; // n: number of crossings G:=Sym(2*n); doubleG := Sym(4*n); genH:={}; for j in [1..(n-1)] do v := G!(1,2*j+1)(2, 2*j+2); Include(~genH,v) ; end for; H := PermutationGroup< 2*n |genH>; // The H=S(n) subgroup of S(2n) cardH:=#H; cardH; rho:=Identity(G); for j in [0..(n-1)] do v := G!(2*j+1, 2*j+2) ; rho := rho*v ; end for; cycrho := PermutationGroup< 2*n |{rho}>; // The cyclic subgroup Z2 generated by rho (mirroring) Hcycrho:=sub
; // The subgroup generated by H and cycrho cardZp:= Factorial(2*n-1); beta:=G!Append([2..2*n],1); // A typical circular permutation Cbeta:=Centralizer(G,beta); bool, rever := IsConjugate(G,beta,beta^(-1)); cycbeta := PermutationGroup< 2*n |{rever}>; Cbetarev := sub ; psifct := function(per); perinv:=per^(-1); res:= [IsOdd(j) select (j+1)^per else j-1 + 2*n : j in [1..2*n] ]; resbis := [IsOdd((j-2*n)^perinv) select (j-2*n)^perinv +1 +2*n else ((j-2*n)^perinv -1)^per : j in [2*n+1..4*n] ]; res cat:= resbis; return doubleG!res; end function; numberofcycles := function(per); ess := CycleStructure(per); return &+[ess[i,2]: i in [1..#ess]]; end function; supernumberofcycles := function(per); return numberofcycles(psifct(per)) ; end function; // result given as a list genuslist (n+2-2g)^^multiplicity where g is the genus // Case UO dbl, dblsize := DoubleCosetRepresentatives(G,H,Cbetarev); #dblsize; genuslist := {* supernumberofcycles(beta^(dbl[j]^(-1))) : j in [1..#dblsize] *}; genuslist; quit; // Robert Coquereaux, Nov 23 2015
Comments