A260885 Triangle read by rows: T(n,g) = number of general immersions of a circle with n crossings in a surface of arbitrary genus g (the circle is oriented, the surface is unoriented).
1, 2, 1, 6, 6, 2, 21, 62, 37, 0, 97, 559, 788, 112, 0, 579, 5614, 14558, 7223, 0, 0, 3812, 56526, 246331, 277407, 34748, 0, 0, 27328, 580860, 3900740, 8179658, 3534594, 0, 0, 0, 206410, 6020736, 58842028, 203974134, 198559566, 22524176, 0, 0, 0
Offset: 1
Examples
The transposed triangle starts: 1 2 6 21 97 579 3812 27328 206410 1 6 62 559 5614 56526 580860 6020736 2 37 788 14558 246331 3900740 58842028 0 112 7223 277407 8179658 203974134 0 0 34748 3534594 198559566 0 0 0 22524176 0 0 0 0 0 0
Links
- Robert Coquereaux and J.-B. Zuber, Maps, immersions and permutations, arXiv preprint arXiv:1507.03163 [math.CO], 2015-2016. Also J. Knot Theory Ramifications 25, 1650047 (2016), DOI: http://dx.doi.org/10.1142/S0218216516500474
Crossrefs
Programs
-
Magma
/* Example n := 6 */ n:=6; n; // n: number of crossings G:=Sym(2*n); doubleG := Sym(4*n); genH:={}; for j in [1..(n-1)] do v := G!(1,2*j+1)(2, 2*j+2); Include(~genH,v) ; end for; H := PermutationGroup< 2*n |genH>; // The H=S(n) subgroup of S(2n) cardH:=#H; cardH; rho:=Identity(G); for j in [0..(n-1)] do v := G!(2*j+1, 2*j+2) ; rho := rho*v ; end for; cycrho := PermutationGroup< 2*n |{rho}>; // The cyclic subgroup Z2 generated by rho (mirroring) Hcycrho:=sub
; // The subgroup generated by H and cycrho cardZp:= Factorial(2*n-1); beta:=G!Append([2..2*n],1); // A typical circular permutation Cbeta:=Centralizer(G,beta); bool, rever := IsConjugate(G,beta,beta^(-1)); cycbeta := PermutationGroup< 2*n |{rever}>; Cbetarev := sub ; psifct := function(per); perinv:=per^(-1); res:= [IsOdd(j) select (j+1)^per else j-1 + 2*n : j in [1..2*n] ]; resbis := [IsOdd((j-2*n)^perinv) select (j-2*n)^perinv +1 +2*n else ((j-2*n)^perinv -1)^per : j in [2*n+1..4*n] ]; res cat:= resbis; return doubleG!res; end function; numberofcycles := function(per); ess := CycleStructure(per); return &+[ess[i,2]: i in [1..#ess]]; end function; supernumberofcycles := function(per); return numberofcycles(psifct(per)) ; end function; // result given as a list genuslist (n+2-2g)^^multiplicity where g is the genus // Case OU dbl, dblsize := DoubleCosetRepresentatives(G,Hcycrho,Cbeta); #dblsize; genuslist := {* supernumberofcycles(beta^(dbl[j]^(-1))) : j in [1..#dblsize] *}; genuslist; quit; // Robert Coquereaux, Nov 23 2015
Comments