cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A260891 Primes having only {1, 6, 7} as digits.

Original entry on oeis.org

7, 11, 17, 61, 67, 71, 167, 617, 661, 677, 761, 1117, 1171, 1667, 1777, 6661, 6761, 7177, 7717, 11117, 11161, 11171, 11177, 11617, 11677, 11717, 11777, 16111, 16661, 17117, 17167, 17761, 61667, 61717, 66161, 66617, 67777, 71161, 71167, 71171, 71671
Offset: 1

Views

Author

Vincenzo Librandi, Aug 05 2015

Keywords

Comments

A020454, A020455 and A020469 are subsequences.

Crossrefs

Cf, similar sequences listed in A260889.

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [1, 6, 7]];
  • Mathematica
    Select[Prime[Range[2 10^4]], Complement[IntegerDigits[#], {1, 6, 7}] == {} &]

A260892 Primes having only {1, 7, 8} as digits.

Original entry on oeis.org

7, 11, 17, 71, 181, 787, 811, 877, 881, 887, 1117, 1171, 1181, 1187, 1777, 1787, 1811, 1871, 1877, 7177, 7187, 7717, 7817, 7877, 8111, 8117, 8171, 8887, 11117, 11171, 11177, 11717, 11777, 11887, 17117, 17881, 18181, 18787, 71171, 71711, 71777, 71881, 71887
Offset: 1

Views

Author

Vincenzo Librandi, Aug 07 2015

Keywords

Comments

A020455, A020456 and A020470 are subsequences.

Crossrefs

Cf. similar sequences listed in A260889.

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [1, 7, 8]];
  • Mathematica
    Select[Prime[Range[2 10^5]], Complement[IntegerDigits[#], {1, 7, 8}] == {} &]

A260893 Primes having only {1, 7, 9} as digits.

Original entry on oeis.org

7, 11, 17, 19, 71, 79, 97, 179, 191, 197, 199, 719, 797, 911, 919, 971, 977, 991, 997, 1117, 1171, 1777, 1979, 1997, 1999, 7177, 7717, 7919, 9199, 9719, 9791, 11117, 11119, 11171, 11177, 11197, 11717, 11719, 11777, 11779, 11971, 17117, 17191, 17791, 17911
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2015

Keywords

Comments

A020455, A020457 and A020471 are subsequences.
Subsequence of A030096.

Crossrefs

Cf. similar sequences listed in A260889.

Programs

  • Magma
    [p: p in PrimesUpTo(3*10^4) | Set(Intseq(p)) subset [1, 7, 9]];
  • Mathematica
    Select[Prime[Range[3 10^3]], Complement[IntegerDigits[#], {1, 7, 9}] == {}&]

A386020 Primes having only {0, 1, 2, 7} as digits.

Original entry on oeis.org

2, 7, 11, 17, 71, 101, 107, 127, 211, 227, 271, 277, 701, 727, 1021, 1117, 1171, 1201, 1217, 1277, 1721, 1777, 2011, 2017, 2027, 2111, 2207, 2221, 2707, 2711, 2777, 7001, 7027, 7121, 7127, 7177, 7207, 7211, 7717, 7727, 10007, 10111, 10177, 10211, 10271, 10711
Offset: 1

Views

Author

Jason Bard, Jul 14 2025

Keywords

Crossrefs

Supersequence of A036953, A199327, A260889.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 2, 7]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 1, 2, 7}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 1, 2, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0127"), 41))) # uses function/imports in A385776
    

A386088 Primes having only {1, 2, 3, 7} as digits.

Original entry on oeis.org

2, 3, 7, 11, 13, 17, 23, 31, 37, 71, 73, 113, 127, 131, 137, 173, 211, 223, 227, 233, 271, 277, 311, 313, 317, 331, 337, 373, 727, 733, 773, 1117, 1123, 1171, 1213, 1217, 1223, 1231, 1237, 1277, 1321, 1327, 1373, 1721, 1723, 1733, 1777, 2111, 2113, 2131, 2137
Offset: 1

Views

Author

Jason Bard, Jul 16 2025

Keywords

Crossrefs

Supersequence of A062350, A214704, A260379, A260889.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 3, 7]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 3, 7}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 2, 3, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1237"), 41))) # uses function/imports in A385776
    

A386093 Primes having only {1, 2, 4, 7} as digits.

Original entry on oeis.org

2, 7, 11, 17, 41, 47, 71, 127, 211, 227, 241, 271, 277, 421, 727, 1117, 1171, 1217, 1277, 1427, 1447, 1471, 1721, 1741, 1747, 1777, 2111, 2141, 2221, 2411, 2417, 2441, 2447, 2477, 2711, 2741, 2777, 4111, 4127, 4177, 4211, 4217, 4241, 4271, 4421, 4441, 4447, 4721
Offset: 1

Views

Author

Jason Bard, Jul 16 2025

Keywords

Crossrefs

Supersequence of A079651, A260267, A260889, A385784.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 4, 7]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 4, 7}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 2, 4, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1247"), 41))) # uses function/imports in A385776
    

A386096 Primes having only {1, 2, 5, 7} as digits.

Original entry on oeis.org

2, 5, 7, 11, 17, 71, 127, 151, 157, 211, 227, 251, 257, 271, 277, 521, 557, 571, 577, 727, 751, 757, 1117, 1151, 1171, 1217, 1277, 1511, 1571, 1721, 1777, 2111, 2221, 2251, 2521, 2551, 2557, 2711, 2777, 5171, 5227, 5521, 5527, 5557, 5711, 5717, 7121, 7127, 7151
Offset: 1

Views

Author

Jason Bard, Jul 16 2025

Keywords

Crossrefs

Supersequence of A214705, A260828, A260889, A385773.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 5, 7]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 5, 7}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 2, 5, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1257"), 41))) # uses function/imports in A385776
    

A386099 Primes having only {1, 2, 6, 7} as digits.

Original entry on oeis.org

2, 7, 11, 17, 61, 67, 71, 127, 167, 211, 227, 271, 277, 617, 661, 677, 727, 761, 1117, 1171, 1217, 1277, 1621, 1627, 1667, 1721, 1777, 2111, 2161, 2221, 2267, 2617, 2621, 2671, 2677, 2711, 2767, 2777, 6121, 6211, 6217, 6221, 6271, 6277, 6661, 6761, 7121, 7127
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A260889, A260891, A385774, A385787.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 6, 7]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 6, 7}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 2, 6, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1267"), 41))) # uses function/imports in A385776
    

A386102 Primes having only {1, 2, 7, 8} as digits.

Original entry on oeis.org

2, 7, 11, 17, 71, 127, 181, 211, 227, 271, 277, 281, 727, 787, 811, 821, 827, 877, 881, 887, 1117, 1171, 1181, 1187, 1217, 1277, 1721, 1777, 1787, 1811, 1871, 1877, 2111, 2221, 2281, 2287, 2711, 2777, 2887, 7121, 7127, 7177, 7187, 7211, 7717, 7727, 7817, 7877
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A260889, A260892, A385775, A385789.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 7, 8]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 7, 8}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 2, 7, 8]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1278"), 41))) # uses function/imports in A385776
    

A386103 Primes having only {1, 2, 7, 9} as digits.

Original entry on oeis.org

2, 7, 11, 17, 19, 29, 71, 79, 97, 127, 179, 191, 197, 199, 211, 227, 229, 271, 277, 719, 727, 797, 911, 919, 929, 971, 977, 991, 997, 1117, 1129, 1171, 1217, 1229, 1277, 1279, 1291, 1297, 1721, 1777, 1979, 1997, 1999, 2111, 2129, 2179, 2221, 2297, 2711, 2719
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A260889, A260893, A261182, A385776.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 7, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 7, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 2, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1279"), 41))) # uses function/imports in A385776
    
Showing 1-10 of 10 results.