cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260905 Totients of the Blum integers.

Original entry on oeis.org

12, 20, 36, 44, 60, 60, 84, 108, 92, 132, 116, 132, 180, 140, 180, 156, 164, 220, 252, 204, 212, 276, 300, 252, 260, 348, 276, 396, 300, 396, 420, 324, 420, 332, 460, 356, 468, 380, 492, 540, 396, 420, 580, 444, 452, 660, 476, 612, 660, 636, 500, 700, 524
Offset: 1

Views

Author

Connor Zapfel, Nov 17 2015

Keywords

Examples

			For the first Blum integer, a(1) = phi(21) = 12.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    Primes:= select(isprime, [seq(4*i+3, i=0.. floor(N/12 - 3/4))]):
    Pairs:= select(t -> t[1]*t[2]<=N, [seq(seq([Primes[i],Primes[j]],j=i+1..nops(Primes)),i=1..nops(Primes))]):
    map(t -> (t[1]-1)*(t[2]-1), sort(Pairs,(s,t) -> s[1]*s[2] < t[1]*t[2])); # Robert Israel, Nov 18 2015
  • Mathematica
    EulerPhi@ With[{lim = 820}, Select[Union[Times @@@ Subsets[Select[Prime@ Range@ PrimePi@ NextPrime[lim/3], Mod[#, 4] == 3 &], {2}]], # <= lim &]] (* Michael De Vlieger, Nov 18 2015, after Harvey P. Dale at A016105 *)
    EulerPhi[Select[4Range[5, 197] + 1, PrimeNu[#] == 2 && MoebiusMu[#] == 1 && Mod[FactorInteger[#][[1, 1]], 4] != 1 &]] (* Alonso del Arte, Nov 18 2015 *)
  • Perl
    use ntheory ":all"; forcomposites { say euler_phi($) if ($ % 4) == 1 && is_square_free($) && scalar(factor($)) == 2 && !scalar(grep { ($ % 4) != 3 } factor($)); } 1000; # Dana Jacobsen, Dec 10 2015
    
  • Python
    from sympy import factorint, totient
    def isBlum(n):
        fn = factorint(n)
        return len(fn) == sum(fn.values()) == 2 and all(f%4 == 3 for f in fn)
    print([totient(k) for k in range(790) if isBlum(k)]) # Michael S. Branicky, Dec 20 2021

Formula

a(n) = phi(Blum(n)) = A000010(A016105(n)), where phi(n) is Euler's totient function and Blum(n) is the n-th Blum integer.
a(n) = (A195758(n)-1)*(A195759(n)-1). - Jianing Song, Sep 16 2019