A260905 Totients of the Blum integers.
12, 20, 36, 44, 60, 60, 84, 108, 92, 132, 116, 132, 180, 140, 180, 156, 164, 220, 252, 204, 212, 276, 300, 252, 260, 348, 276, 396, 300, 396, 420, 324, 420, 332, 460, 356, 468, 380, 492, 540, 396, 420, 580, 444, 452, 660, 476, 612, 660, 636, 500, 700, 524
Offset: 1
Examples
For the first Blum integer, a(1) = phi(21) = 12.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996.
- Wikipedia, Blum Integers
- Wikipedia, Euler Phi Function
Programs
-
Maple
N:= 1000: # to get all terms <= N Primes:= select(isprime, [seq(4*i+3, i=0.. floor(N/12 - 3/4))]): Pairs:= select(t -> t[1]*t[2]<=N, [seq(seq([Primes[i],Primes[j]],j=i+1..nops(Primes)),i=1..nops(Primes))]): map(t -> (t[1]-1)*(t[2]-1), sort(Pairs,(s,t) -> s[1]*s[2] < t[1]*t[2])); # Robert Israel, Nov 18 2015
-
Mathematica
EulerPhi@ With[{lim = 820}, Select[Union[Times @@@ Subsets[Select[Prime@ Range@ PrimePi@ NextPrime[lim/3], Mod[#, 4] == 3 &], {2}]], # <= lim &]] (* Michael De Vlieger, Nov 18 2015, after Harvey P. Dale at A016105 *) EulerPhi[Select[4Range[5, 197] + 1, PrimeNu[#] == 2 && MoebiusMu[#] == 1 && Mod[FactorInteger[#][[1, 1]], 4] != 1 &]] (* Alonso del Arte, Nov 18 2015 *)
-
Perl
use ntheory ":all"; forcomposites { say euler_phi($) if ($ % 4) == 1 && is_square_free($) && scalar(factor($)) == 2 && !scalar(grep { ($ % 4) != 3 } factor($)); } 1000; # Dana Jacobsen, Dec 10 2015
-
Python
from sympy import factorint, totient def isBlum(n): fn = factorint(n) return len(fn) == sum(fn.values()) == 2 and all(f%4 == 3 for f in fn) print([totient(k) for k in range(790) if isBlum(k)]) # Michael S. Branicky, Dec 20 2021