A260914 Triangle read by rows: T(n,g) = number of general immersions of a circle with n crossings in a surface of arbitrary genus g (the circle is not oriented, the surface is not oriented).
1, 2, 1, 6, 5, 1, 19, 45, 22, 0, 76, 335, 427, 56, 0, 376, 3101, 7557, 3681, 0, 0, 2194, 29415, 124919, 139438, 17398, 0, 0, 14614, 295859, 1921246, 4098975, 1768704, 0, 0, 0, 106421, 3031458, 29479410, 102054037, 99304511, 11262088, 0, 0, 0
Offset: 1
Examples
The transposed triangle starts: 1 2 6 19 76 376 2194 14614 106421 1 5 45 335 3101 29415 295859 3031458 1 22 427 7557 124919 1961246 29479410 0 56 3681 139438 4098975 102054037 0 0 17398 1768704 99394511 0 0 0 11262088 0 0 0 0 0 0
Links
- Robert Coquereaux and J.-B. Zuber, Maps, immersions and permutations, arXiv preprint arXiv:1507.03163 [math.CO], 2015-2016. Also J. Knot Theory Ramifications 25, 1650047 (2016), DOI: 10.1142/S0218216516500474
Crossrefs
Programs
-
Magma
/* Example n := 6 */ n:=6; n; // n: number of crossings G:=Sym(2*n); doubleG := Sym(4*n); genH:={}; for j in [1..(n-1)] do v := G!(1,2*j+1)(2, 2*j+2); Include(~genH,v) ; end for; H := PermutationGroup< 2*n |genH>; // The H=S(n) subgroup of S(2n) cardH:=#H; cardH; rho:=Identity(G); for j in [0..(n-1)] do v := G!(2*j+1, 2*j+2) ; rho := rho*v ; end for; cycrho := PermutationGroup< 2*n |{rho}>; // The cyclic subgroup Z2 generated by rho (mirroring) Hcycrho:=sub
; // The subgroup generated by H and cycrho cardZp:= Factorial(2*n-1); beta:=G!Append([2..2*n],1); // A typical circular permutation Cbeta:=Centralizer(G,beta); bool, rever := IsConjugate(G,beta,beta^(-1)); cycbeta := PermutationGroup< 2*n |{rever}>; Cbetarev := sub ; psifct := function(per); perinv:=per^(-1); res:= [IsOdd(j) select (j+1)^per else j-1 + 2*n : j in [1..2*n] ]; resbis := [IsOdd((j-2*n)^perinv) select (j-2*n)^perinv +1 +2*n else ((j-2*n)^perinv -1)^per : j in [2*n+1..4*n] ]; res cat:= resbis; return doubleG!res; end function; numberofcycles := function(per); ess := CycleStructure(per); return &+[ess[i,2]: i in [1..#ess]]; end function; supernumberofcycles := function(per); return numberofcycles(psifct(per)) ; end function; // result given as a list genuslist (n+2-2g)^^multiplicity where g is the genus // Case UU dbl, dblsize := DoubleCosetRepresentatives(G,Hcycrho,Cbetarev); #dblsize; genuslist := {* supernumberofcycles(beta^(dbl[j]^(-1))) : j in [1..#dblsize] *}; genuslist; quit; // Robert Coquereaux, Nov 23 2015
Comments