A260940 a(n) is the smallest index j>n such that g(j)=0 for the sequence g defined (for indices > n) by g(n+1)=n and g(i) = g(i-1) - gcd(i,g(i-1)).
3, 5, 7, 7, 11, 13, 13, 17, 19, 19, 23, 19, 21, 29, 31, 31, 31, 37, 37, 41, 43, 43, 47, 43, 43, 53, 43, 41, 59, 61, 61, 61, 67, 67, 71, 73, 73, 71, 79, 79, 83, 79, 79, 89, 79, 79, 79, 97, 97, 101, 103, 103, 107, 109, 109, 113, 109, 109, 113, 109
Offset: 1
Keywords
Links
- Moritz Firsching, Table of n, a(n) for n = 1..9999
Crossrefs
Programs
-
PARI
a(last_a) = { local(A=last_a,B=last_a,C=2*last_a+1); while(A>0, D=divisors(C); k1=10*D[2]; for(j=2,matsize(D)[2],d=D[j];k=((A+1-B+d)/2)%d; if(k==0,k=d); if(k<=k1,k1=k;d1=d)); if(k1-1+d1==A,B=B+1); A = max(A-(k1-1)-d1,0); B = B + k1; C = C - (d1 - 1); ); return(B); } a(n)={ my(A=n, B=n, C=2*n+1); while(A>0, my(k1=oo,d1); fordiv(C,d, if(d==1,next); my(k=((A+1-B+d)/2)%d); if(k==0, k=d); if(k<=k1, k1=k; d1=d) ); A -= k1 - 1 + d1; B += k1 + (A==0); C -= d1 - 1; ); B; } \\ Charles R Greathouse IV, Nov 04 2015
-
Sage
def a(n): g=n n+=1 while(g!=0): g=g-gcd(n,g) n+=1 return n
Comments