cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A260578 Coefficients in asymptotic expansion of sequence A259869.

Original entry on oeis.org

1, 0, -2, -6, -29, -196, -1665, -16796, -194905, -2549468, -37055681, -592013436, -10307671769, -194225544124, -3937581243201, -85460277981116, -1977127315636969, -48573021658496348, -1262954975286604673, -34650561545808167292, -1000438355724912080873
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 29 2015

Keywords

Comments

For k > 1 is a(k) negative.

Examples

			A259869(n) / (n!/exp(1)) ~ 1 - 2/n^2 - 6/n^3 - 29/n^4 - 196/n^5 - 1665/n^6 - ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; b = CoefficientList[Assuming[Element[x, Reals], Series[x^2*E^(2 + 2/x)/ExpIntegralEi[1 + 1/x]^2, {x, 0, nmax}]], x]; Flatten[{1, Table[Sum[b[[k+1]]*StirlingS2[n-1, k-1], {k, 1, n}], {n, 1, nmax}]}] (* Vaclav Kotesovec, Aug 03 2015 *)

Formula

a(k) ~ -k! / (2 * exp(1) * (log(2))^(k+1)).

A259872 a(0)=-1, a(1)=1; a(n) = n*a(n-1) + (n-2)*a(n-2) + Sum_{j=1..n-1} a(j)*a(n-j) + 2*Sum_{j=0..n-1} a(j)*a(n-1-j).

Original entry on oeis.org

-1, 1, -1, 2, -1, 9, 26, 201, 1407, 11714, 107983, 1102433, 12332994, 150103585, 1974901951, 27935229074, 422799610943, 6818164335881, 116717210194218, 2113959805887881, 40388891717569887, 811833598825134258, 17126091132964548335, 378335451153341591041
Offset: 0

Views

Author

N. J. A. Sloane, Jul 09 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Assuming[Element[x, Reals], Series[-1/(ExpIntegralEi[1 + 1/x]/Exp[1 + 1/x] + 1), {x, 0, nmax}]], x] (* Vaclav Kotesovec, Aug 05 2015 *)
  • Sage
    @CachedFunction
    def a(n) : return -1 if n==0 else 1 if n==1 else n*a(n-1) + (n-2)*a(n-2) + sum(a(j)*a(n-j) for j in [1..n-1]) + 2*sum(a(j)*a(n-1-j) for j in [0..n-1]) # Eric M. Schmidt, Jul 10 2015

Formula

Martin and Kearney (2015) give a g.f.
a(n) ~ (n-1)! / exp(1) * (1 - 2/n + 1/n^2 + 1/n^3 - 10/n^4 - 61/n^5 - 382/n^6 - 3489/n^7 - 39001/n^8 - 484075/n^9 - 6619449/n^10), for coefficients see A260950. - Vaclav Kotesovec, Jul 29 2015

Extensions

Definition corrected by and more terms from Eric M. Schmidt, Jul 10 2015

A260948 Coefficients in asymptotic expansion of sequence A259870.

Original entry on oeis.org

1, 2, 5, 17, 74, 395, 2526, 19087, 168603, 1723065, 20148031, 266437102, 3938754720, 64391209604, 1152961464743, 22424127879610, 470399253269776, 10579865622308851, 253840801521314095, 6468953273455413674, 174452533187403980841, 4962228907578051232358
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 05 2015

Keywords

Examples

			A259870(n)/((n-1)!/exp(1)) ~ 1 + 2/n + 5/n^2 + 17/n^3 + 74/n^4 + 395/n^5 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 25; b = CoefficientList[Assuming[Element[x, Reals], Series[x/(ExpIntegralEi[1 + 1/x]/Exp[1 + 1/x] - 1)^2, {x, 0, nmax+1}]], x]; Table[Sum[b[[k+1]]*StirlingS2[n, k-1], {k, 1, n+1}], {n, 0, nmax}]

Formula

a(k) ~ 2 * exp(-1) * (k-1)! / (log(2))^k.

A260949 Coefficients in asymptotic expansion of sequence A259871.

Original entry on oeis.org

1, 4, 16, 76, 416, 2576, 17840, 137268, 1170104, 11050940, 115885968, 1353366864, 17640817784, 256630492660, 4153220868128, 74315436120300, 1458541231513152, 31131651836906752, 716862465409883040, 17683184383300077828, 464519709712796199816
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 05 2015

Keywords

Examples

			A259871(n)/((n-1)!/exp(1)) ~ 1 + 4/n + 16/n^2 + 76/n^3 + 416/n^4 + 2576/n^5 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 25; b = CoefficientList[Assuming[Element[x, Reals], Series[x/(2*ExpIntegralEi[1 + 1/x]/Exp[1 + 1/x] - 1)^2, {x, 0, nmax+1}]], x]; Table[Sum[b[[k+1]]*StirlingS2[n, k-1], {k, 1, n+1}], {n, 0, nmax}]

Formula

a(k) ~ 4 * exp(-1) * (k-1)! / (log(2))^k.

A305275 Coefficients in asymptotic expansion of sequence A302557.

Original entry on oeis.org

1, 0, 2, 6, 35, 256, 2187, 21620, 243947, 3098528, 43799819, 682540780, 11630529643, 215190967544, 4296657514283, 92083313483300, 2108244638675035, 51350077108834832, 1325682930813985547, 36157047428501464220, 1038793351537388253211, 31354977545074731373512
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 18 2018

Keywords

Examples

			A302557(n) / (exp(-1) * n!) ~ 1 + 2/n^2 + 6/n^3 + 35/n^4 + 256/n^5 + 2187/n^6 + ...
		

Crossrefs

Formula

a(k) ~ k! / (2 * exp(1) * (log(2))^(k+1)).
Showing 1-5 of 5 results.