A260950
Coefficients in asymptotic expansion of sequence A259872.
Original entry on oeis.org
1, -2, 1, 1, -10, -61, -382, -3489, -39001, -484075, -6619449, -99610098, -1638687448, -29255834780, -563343011377, -11639759292186, -256916737692132, -6034068201092777, -150271333127027481, -3955735249215111270, -109757859467421502791
Offset: 0
A259872(n)/((n-1)!/exp(1)) ~ 1 - 2/n + 1/n^2 + 1/n^3 - 10/n^4 - 61/n^5 - ...
-
nmax = 25; b = CoefficientList[Assuming[Element[x, Reals], Series[x/(ExpIntegralEi[1 + 1/x]/Exp[1 + 1/x] + 1)^2, {x, 0, nmax+1}]], x]; Table[Sum[b[[k+1]]*StirlingS2[n, k-1], {k, 1, n+1}], {n, 0, nmax}]
A259869
a(0) = -1; for n > 0, number of indecomposable derangements, i.e., no fixed points, and not fixing [1..j] for any 1 <= j < n.
Original entry on oeis.org
-1, 0, 1, 2, 8, 40, 244, 1736, 14084, 128176, 1292788, 14313272, 172603124, 2252192608, 31620422980, 475350915656, 7618759828388, 129697180826512, 2337145267316500, 44446207287450968, 889595868295057364, 18693361200724345024, 411475140936880082020
Offset: 0
There are 9 derangements of 1,2,3,4. All of them are indecomposable except for 2,1,4,3. Thus a(4) = 8. - _Eric M. Schmidt_, Jul 10 2015
-
Clear[a]; a[0]=-1; a[1]=0; a[n_]:=a[n]=(n-1)*a[n-1] + (n-3)*a[n-2] + Sum[a[j]*a[n-j],{j,1,n-1}]; Table[a[n],{n,0,20}] (* Vaclav Kotesovec, Jul 29 2015 *)
nmax = 25; CoefficientList[Assuming[Element[x, Reals], Series[-x*E^(1 + 1/x)/ExpIntegralEi[1 + 1/x], {x, 0, nmax}]], x] (* Vaclav Kotesovec, Aug 05 2015 *)
-
def a(n) : return -1 if n==0 else 0 if n==1 else (n-1)*a(n-1) + (n-3)*a(n-2) + sum(a(j)*a(n-j) for j in [1..n-1]) # Eric M. Schmidt, Jul 10 2015
A259870
a(0)=0, a(1)=1; a(n) = n*a(n-1) + (n-2)*a(n-2) - Sum_{j=1..n-1} a(j)*a(n-j).
Original entry on oeis.org
0, 1, 1, 2, 5, 17, 74, 401, 2609, 19802, 171437, 1664585, 17892938, 210771761, 2698597601, 37301188610, 553473138677, 8773014886289, 147928235322314, 2643635547262049, 49909639472912177, 992516629078846010, 20736210820909594109, 454084963076923193321
Offset: 0
-
nmax = 25; CoefficientList[Assuming[Element[x, Reals], Series[-1/(ExpIntegralEi[1 + 1/x]/Exp[1 + 1/x] - 1) - 1, {x, 0, nmax}]], x] (* Vaclav Kotesovec, Aug 05 2015 *)
-
a=vector(30); a[1]=0; a[2]=1; for(n=2, #a-1, a[n+1] = n*a[n] + (n-2)*a[n-1] - sum(j=1, n-1, a[j+1]*a[n-j+1])); a \\ Colin Barker, Jul 09 2015
A259871
a(0)=1/2, a(1)=1; a(n) = n*a(n-1) + (n-2)*a(n-2) - 2*Sum_{j=1..n-1} a(j)*a(n-j) + 2*Sum_{j=0..n-1} a(j)*a(n-1-j).
Original entry on oeis.org
1, 2, 5, 14, 45, 170, 777, 4350, 29513, 236530, 2179133, 22576206, 258821269, 3245286490, 44115311969, 645664173566, 10117122765905, 168922438409826, 2993228077070645, 56090022818326542, 1108099905463382973, 23015655499699484810, 501356717394207256441
Offset: 1
-
nmax = 25; Rest[CoefficientList[Assuming[Element[x, Reals], Series[-1/(2*ExpIntegralEi[1 + 1/x]/Exp[1 + 1/x] - 1)/2, {x, 0, nmax}]], x]] (* Vaclav Kotesovec, Aug 05 2015 *)
-
@CachedFunction
def a(n) : return 1 if n==1 else 2 if n==2 else (n+2)*a(n-1) + (n-2)*a(n-2) - 2*sum(a(j)*a(n-j) for j in [1..n-1]) + 2*sum(a(j)*a(n-1-j) for j in [1..n-2])
Showing 1-4 of 4 results.
Comments