A260949
Coefficients in asymptotic expansion of sequence A259871.
Original entry on oeis.org
1, 4, 16, 76, 416, 2576, 17840, 137268, 1170104, 11050940, 115885968, 1353366864, 17640817784, 256630492660, 4153220868128, 74315436120300, 1458541231513152, 31131651836906752, 716862465409883040, 17683184383300077828, 464519709712796199816
Offset: 0
A259871(n)/((n-1)!/exp(1)) ~ 1 + 4/n + 16/n^2 + 76/n^3 + 416/n^4 + 2576/n^5 + ...
-
nmax = 25; b = CoefficientList[Assuming[Element[x, Reals], Series[x/(2*ExpIntegralEi[1 + 1/x]/Exp[1 + 1/x] - 1)^2, {x, 0, nmax+1}]], x]; Table[Sum[b[[k+1]]*StirlingS2[n, k-1], {k, 1, n+1}], {n, 0, nmax}]
A259869
a(0) = -1; for n > 0, number of indecomposable derangements, i.e., no fixed points, and not fixing [1..j] for any 1 <= j < n.
Original entry on oeis.org
-1, 0, 1, 2, 8, 40, 244, 1736, 14084, 128176, 1292788, 14313272, 172603124, 2252192608, 31620422980, 475350915656, 7618759828388, 129697180826512, 2337145267316500, 44446207287450968, 889595868295057364, 18693361200724345024, 411475140936880082020
Offset: 0
There are 9 derangements of 1,2,3,4. All of them are indecomposable except for 2,1,4,3. Thus a(4) = 8. - _Eric M. Schmidt_, Jul 10 2015
-
Clear[a]; a[0]=-1; a[1]=0; a[n_]:=a[n]=(n-1)*a[n-1] + (n-3)*a[n-2] + Sum[a[j]*a[n-j],{j,1,n-1}]; Table[a[n],{n,0,20}] (* Vaclav Kotesovec, Jul 29 2015 *)
nmax = 25; CoefficientList[Assuming[Element[x, Reals], Series[-x*E^(1 + 1/x)/ExpIntegralEi[1 + 1/x], {x, 0, nmax}]], x] (* Vaclav Kotesovec, Aug 05 2015 *)
-
def a(n) : return -1 if n==0 else 0 if n==1 else (n-1)*a(n-1) + (n-3)*a(n-2) + sum(a(j)*a(n-j) for j in [1..n-1]) # Eric M. Schmidt, Jul 10 2015
A259870
a(0)=0, a(1)=1; a(n) = n*a(n-1) + (n-2)*a(n-2) - Sum_{j=1..n-1} a(j)*a(n-j).
Original entry on oeis.org
0, 1, 1, 2, 5, 17, 74, 401, 2609, 19802, 171437, 1664585, 17892938, 210771761, 2698597601, 37301188610, 553473138677, 8773014886289, 147928235322314, 2643635547262049, 49909639472912177, 992516629078846010, 20736210820909594109, 454084963076923193321
Offset: 0
-
nmax = 25; CoefficientList[Assuming[Element[x, Reals], Series[-1/(ExpIntegralEi[1 + 1/x]/Exp[1 + 1/x] - 1) - 1, {x, 0, nmax}]], x] (* Vaclav Kotesovec, Aug 05 2015 *)
-
a=vector(30); a[1]=0; a[2]=1; for(n=2, #a-1, a[n+1] = n*a[n] + (n-2)*a[n-1] - sum(j=1, n-1, a[j+1]*a[n-j+1])); a \\ Colin Barker, Jul 09 2015
A259872
a(0)=-1, a(1)=1; a(n) = n*a(n-1) + (n-2)*a(n-2) + Sum_{j=1..n-1} a(j)*a(n-j) + 2*Sum_{j=0..n-1} a(j)*a(n-1-j).
Original entry on oeis.org
-1, 1, -1, 2, -1, 9, 26, 201, 1407, 11714, 107983, 1102433, 12332994, 150103585, 1974901951, 27935229074, 422799610943, 6818164335881, 116717210194218, 2113959805887881, 40388891717569887, 811833598825134258, 17126091132964548335, 378335451153341591041
Offset: 0
-
nmax = 25; CoefficientList[Assuming[Element[x, Reals], Series[-1/(ExpIntegralEi[1 + 1/x]/Exp[1 + 1/x] + 1), {x, 0, nmax}]], x] (* Vaclav Kotesovec, Aug 05 2015 *)
-
@CachedFunction
def a(n) : return -1 if n==0 else 1 if n==1 else n*a(n-1) + (n-2)*a(n-2) + sum(a(j)*a(n-j) for j in [1..n-1]) + 2*sum(a(j)*a(n-1-j) for j in [0..n-1]) # Eric M. Schmidt, Jul 10 2015
Showing 1-4 of 4 results.
Comments