A260578
Coefficients in asymptotic expansion of sequence A259869.
Original entry on oeis.org
1, 0, -2, -6, -29, -196, -1665, -16796, -194905, -2549468, -37055681, -592013436, -10307671769, -194225544124, -3937581243201, -85460277981116, -1977127315636969, -48573021658496348, -1262954975286604673, -34650561545808167292, -1000438355724912080873
Offset: 0
A259869(n) / (n!/exp(1)) ~ 1 - 2/n^2 - 6/n^3 - 29/n^4 - 196/n^5 - 1665/n^6 - ...
-
nmax = 20; b = CoefficientList[Assuming[Element[x, Reals], Series[x^2*E^(2 + 2/x)/ExpIntegralEi[1 + 1/x]^2, {x, 0, nmax}]], x]; Flatten[{1, Table[Sum[b[[k+1]]*StirlingS2[n-1, k-1], {k, 1, n}], {n, 1, nmax}]}] (* Vaclav Kotesovec, Aug 03 2015 *)
A259870
a(0)=0, a(1)=1; a(n) = n*a(n-1) + (n-2)*a(n-2) - Sum_{j=1..n-1} a(j)*a(n-j).
Original entry on oeis.org
0, 1, 1, 2, 5, 17, 74, 401, 2609, 19802, 171437, 1664585, 17892938, 210771761, 2698597601, 37301188610, 553473138677, 8773014886289, 147928235322314, 2643635547262049, 49909639472912177, 992516629078846010, 20736210820909594109, 454084963076923193321
Offset: 0
-
nmax = 25; CoefficientList[Assuming[Element[x, Reals], Series[-1/(ExpIntegralEi[1 + 1/x]/Exp[1 + 1/x] - 1) - 1, {x, 0, nmax}]], x] (* Vaclav Kotesovec, Aug 05 2015 *)
-
a=vector(30); a[1]=0; a[2]=1; for(n=2, #a-1, a[n+1] = n*a[n] + (n-2)*a[n-1] - sum(j=1, n-1, a[j+1]*a[n-j+1])); a \\ Colin Barker, Jul 09 2015
A259871
a(0)=1/2, a(1)=1; a(n) = n*a(n-1) + (n-2)*a(n-2) - 2*Sum_{j=1..n-1} a(j)*a(n-j) + 2*Sum_{j=0..n-1} a(j)*a(n-1-j).
Original entry on oeis.org
1, 2, 5, 14, 45, 170, 777, 4350, 29513, 236530, 2179133, 22576206, 258821269, 3245286490, 44115311969, 645664173566, 10117122765905, 168922438409826, 2993228077070645, 56090022818326542, 1108099905463382973, 23015655499699484810, 501356717394207256441
Offset: 1
-
nmax = 25; Rest[CoefficientList[Assuming[Element[x, Reals], Series[-1/(2*ExpIntegralEi[1 + 1/x]/Exp[1 + 1/x] - 1)/2, {x, 0, nmax}]], x]] (* Vaclav Kotesovec, Aug 05 2015 *)
-
@CachedFunction
def a(n) : return 1 if n==1 else 2 if n==2 else (n+2)*a(n-1) + (n-2)*a(n-2) - 2*sum(a(j)*a(n-j) for j in [1..n-1]) + 2*sum(a(j)*a(n-1-j) for j in [1..n-2])
A259872
a(0)=-1, a(1)=1; a(n) = n*a(n-1) + (n-2)*a(n-2) + Sum_{j=1..n-1} a(j)*a(n-j) + 2*Sum_{j=0..n-1} a(j)*a(n-1-j).
Original entry on oeis.org
-1, 1, -1, 2, -1, 9, 26, 201, 1407, 11714, 107983, 1102433, 12332994, 150103585, 1974901951, 27935229074, 422799610943, 6818164335881, 116717210194218, 2113959805887881, 40388891717569887, 811833598825134258, 17126091132964548335, 378335451153341591041
Offset: 0
-
nmax = 25; CoefficientList[Assuming[Element[x, Reals], Series[-1/(ExpIntegralEi[1 + 1/x]/Exp[1 + 1/x] + 1), {x, 0, nmax}]], x] (* Vaclav Kotesovec, Aug 05 2015 *)
-
@CachedFunction
def a(n) : return -1 if n==0 else 1 if n==1 else n*a(n-1) + (n-2)*a(n-2) + sum(a(j)*a(n-j) for j in [1..n-1]) + 2*sum(a(j)*a(n-1-j) for j in [0..n-1]) # Eric M. Schmidt, Jul 10 2015
A302557
Expansion of 1/(2 - Sum_{k>=0} k!*x^k/(1 + x)^(k+1)).
Original entry on oeis.org
1, 0, 1, 2, 10, 48, 288, 1984, 15660, 139312, 1380484, 15080152, 180017780, 2331038048, 32537274756, 486942025288, 7777172706308, 132025174277392, 2373753512469972, 45059504242538328, 900498975768121972, 18898334957168597184, 415537355533831049572, 9552918187197519923176
Offset: 0
-
nmax = 23; CoefficientList[Series[1/(2 - Sum[k! x^k/(1 + x)^(k + 1), {k, 0, nmax}]), {x, 0, nmax}], x]
nmax = 23; CoefficientList[Series[1/(1 - Sum[Round[k!/Exp[1]] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[Subfactorial[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
Showing 1-5 of 5 results.
Comments