A260503
Coefficients in an asymptotic expansion of sequence A003319.
Original entry on oeis.org
1, -2, -1, -5, -32, -253, -2381, -25912, -319339, -4388949, -66495386, -1100521327, -19751191053, -382062458174, -7924762051957, -175478462117633, -4132047373455024, -103115456926017761, -2718766185148876961, -75529218928863243200, -2205316818199975235447
Offset: 0
A003319(n) / n! ~ 1 - 2/n - 1/n^2 - 5/n^3 - 32/n^4 - 253/n^5 - 2381/n^6 - ...
-
Flatten[{1, Table[Sum[Assuming[Element[x,Reals], SeriesCoefficient[E^(2/x)*x^2 / ExpIntegralEi[1/x]^2,{x,0,k}]] * StirlingS2[n-1,k-1], {k,1,n}], {n,1,20}]}] (* Vaclav Kotesovec, Aug 03 2015 *)
A256168
Coefficients in asymptotic expansion of sequence A052186.
Original entry on oeis.org
1, -2, 1, -1, -9, -59, -474, -4560, -50364, -625385, -8622658, -130751886, -2163331779, -38793751015, -749691306018, -15535914341831, -343749787006758, -8089725377931547, -201801866906374263, -5319643146604299835, -147774950436327236681
Offset: 0
A052186(n) / n! ~ 1 - 2/n + 1/n^2 - 1/n^3 - 9/n^4 - 59/n^5 - 474/n^6 - ...
-
nmax = 30; b = CoefficientList[Assuming[Element[x, Reals], Series[E^(2/x) / (ExpIntegralEi[1/x] + E^(1/x))^2, {x, 0, nmax}]], x]; Flatten[{1, Table[Sum[b[[k+1]]*StirlingS2[n-1, k-1], {k, 1, n}], {n, 1, nmax}]}] (* Vaclav Kotesovec, Aug 03 2015 *)
A260491
Coefficients in asymptotic expansion of sequence A077607.
Original entry on oeis.org
1, -4, 0, -8, -76, -752, -8460, -107520, -1522124, -23717424, -402941324, -7407988448, -146479479308, -3099229422352, -69863683041868, -1671667534710720, -42318672085310540, -1130167625049525232, -31758424368739424780, -936840101208573355680
Offset: 0
A077607(n) / (-n!) ~ 1 - 4/n - 8/n^3 - 76/n^4 - 752/n^5 - 8460/n^6 - ...
-
nmax = 30; b = CoefficientList[Assuming[Element[x, Reals], Series[x^4*E^(2/x)/(ExpIntegralEi[1/x] - x*E^(1/x))^2, {x, 0, nmax}]], x]; Flatten[{1, Table[Sum[b[[k+1]]*StirlingS2[n-1, k-1], {k, 1, n}], {n, 1, nmax}]}] (* Vaclav Kotesovec, Aug 03 2015 *)
A260532
Coefficients in asymptotic expansion of sequence A051295.
Original entry on oeis.org
1, 2, 7, 31, 165, 1025, 7310, 59284, 543702, 5618267, 65200918, 846462826, 12229783811, 195394019337, 3427472046792, 65526442181293, 1355785469986828, 30166624979467869, 717769036033944699, 18174105506247664633, 487655384740384445407, 13816406622559942660420
Offset: 0
A051295(n)/(n-1)! ~ 1 + 2/n + 7/n^2 + 31/n^3 + 165/n^4 + 1025/n^5 + 7310/n^6 + ...
-
nmax = 30; b = CoefficientList[Assuming[Element[x, Reals], Series[E^(2/x)*x / (ExpIntegralEi[1/x] - E^(1/x))^2, {x, 0, nmax+1}]], x]; Table[Sum[b[[k+1]] * StirlingS2[n, k-1], {k, 1, n+1}], {n, 0, nmax}] (* Vaclav Kotesovec, Aug 03 2015 *)
A260530
Coefficients in asymptotic expansion of sequence A051296.
Original entry on oeis.org
1, 2, 7, 35, 216, 1575, 13243, 126508, 1359437, 16312915, 217277446, 3194459333, 51557948291, 908431129702, 17376289236947, 358847480175063, 7959468559605624, 188702262366570387, 4760773506835189975, 127312428854513811012, 3596091234340397964321
Offset: 0
A051296(n) / n! ~ 1 + 2/n + 7/n^2 + 35/n^3 + 216/n^4 + 1575/n^5 + 13243/n^6 + ...
-
nmax = 30; b = CoefficientList[Assuming[Element[x, Reals], Series[E^(2/x)*x^2 / (ExpIntegralEi[1/x] - 2*x*E^(1/x))^2, {x, 0, nmax}]], x]; Flatten[{1, Table[Sum[b[[k+1]]*StirlingS2[n-1, k-1], {k, 1, n}], {n, 1, nmax}]}] (* Vaclav Kotesovec, Aug 03 2015 *)
A259869
a(0) = -1; for n > 0, number of indecomposable derangements, i.e., no fixed points, and not fixing [1..j] for any 1 <= j < n.
Original entry on oeis.org
-1, 0, 1, 2, 8, 40, 244, 1736, 14084, 128176, 1292788, 14313272, 172603124, 2252192608, 31620422980, 475350915656, 7618759828388, 129697180826512, 2337145267316500, 44446207287450968, 889595868295057364, 18693361200724345024, 411475140936880082020
Offset: 0
There are 9 derangements of 1,2,3,4. All of them are indecomposable except for 2,1,4,3. Thus a(4) = 8. - _Eric M. Schmidt_, Jul 10 2015
-
Clear[a]; a[0]=-1; a[1]=0; a[n_]:=a[n]=(n-1)*a[n-1] + (n-3)*a[n-2] + Sum[a[j]*a[n-j],{j,1,n-1}]; Table[a[n],{n,0,20}] (* Vaclav Kotesovec, Jul 29 2015 *)
nmax = 25; CoefficientList[Assuming[Element[x, Reals], Series[-x*E^(1 + 1/x)/ExpIntegralEi[1 + 1/x], {x, 0, nmax}]], x] (* Vaclav Kotesovec, Aug 05 2015 *)
-
def a(n) : return -1 if n==0 else 0 if n==1 else (n-1)*a(n-1) + (n-3)*a(n-2) + sum(a(j)*a(n-j) for j in [1..n-1]) # Eric M. Schmidt, Jul 10 2015
A260948
Coefficients in asymptotic expansion of sequence A259870.
Original entry on oeis.org
1, 2, 5, 17, 74, 395, 2526, 19087, 168603, 1723065, 20148031, 266437102, 3938754720, 64391209604, 1152961464743, 22424127879610, 470399253269776, 10579865622308851, 253840801521314095, 6468953273455413674, 174452533187403980841, 4962228907578051232358
Offset: 0
A259870(n)/((n-1)!/exp(1)) ~ 1 + 2/n + 5/n^2 + 17/n^3 + 74/n^4 + 395/n^5 + ...
-
nmax = 25; b = CoefficientList[Assuming[Element[x, Reals], Series[x/(ExpIntegralEi[1 + 1/x]/Exp[1 + 1/x] - 1)^2, {x, 0, nmax+1}]], x]; Table[Sum[b[[k+1]]*StirlingS2[n, k-1], {k, 1, n+1}], {n, 0, nmax}]
A260949
Coefficients in asymptotic expansion of sequence A259871.
Original entry on oeis.org
1, 4, 16, 76, 416, 2576, 17840, 137268, 1170104, 11050940, 115885968, 1353366864, 17640817784, 256630492660, 4153220868128, 74315436120300, 1458541231513152, 31131651836906752, 716862465409883040, 17683184383300077828, 464519709712796199816
Offset: 0
A259871(n)/((n-1)!/exp(1)) ~ 1 + 4/n + 16/n^2 + 76/n^3 + 416/n^4 + 2576/n^5 + ...
-
nmax = 25; b = CoefficientList[Assuming[Element[x, Reals], Series[x/(2*ExpIntegralEi[1 + 1/x]/Exp[1 + 1/x] - 1)^2, {x, 0, nmax+1}]], x]; Table[Sum[b[[k+1]]*StirlingS2[n, k-1], {k, 1, n+1}], {n, 0, nmax}]
A260950
Coefficients in asymptotic expansion of sequence A259872.
Original entry on oeis.org
1, -2, 1, 1, -10, -61, -382, -3489, -39001, -484075, -6619449, -99610098, -1638687448, -29255834780, -563343011377, -11639759292186, -256916737692132, -6034068201092777, -150271333127027481, -3955735249215111270, -109757859467421502791
Offset: 0
A259872(n)/((n-1)!/exp(1)) ~ 1 - 2/n + 1/n^2 + 1/n^3 - 10/n^4 - 61/n^5 - ...
-
nmax = 25; b = CoefficientList[Assuming[Element[x, Reals], Series[x/(ExpIntegralEi[1 + 1/x]/Exp[1 + 1/x] + 1)^2, {x, 0, nmax+1}]], x]; Table[Sum[b[[k+1]]*StirlingS2[n, k-1], {k, 1, n+1}], {n, 0, nmax}]
A305275
Coefficients in asymptotic expansion of sequence A302557.
Original entry on oeis.org
1, 0, 2, 6, 35, 256, 2187, 21620, 243947, 3098528, 43799819, 682540780, 11630529643, 215190967544, 4296657514283, 92083313483300, 2108244638675035, 51350077108834832, 1325682930813985547, 36157047428501464220, 1038793351537388253211, 31354977545074731373512
Offset: 0
A302557(n) / (exp(-1) * n!) ~ 1 + 2/n^2 + 6/n^3 + 35/n^4 + 256/n^5 + 2187/n^6 + ...
Showing 1-10 of 10 results.
Comments