cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A109253 Number of elements of the Weyl group of type B where a reduced word contains all of the simple reflections.

Original entry on oeis.org

1, 1, 5, 35, 309, 3287, 41005, 588487, 9571125, 174230863, 3513016445, 77760961991, 1875249535941, 48946667107295, 1374949148971597, 41361812577803383, 1326708910645563669, 45201102932347559503, 1630193308027321807133, 62047171055048539457255
Offset: 0

Views

Author

Mike Zabrocki, Aug 19 2005

Keywords

Comments

This is the analog of a connected permutation (permutation with no global ascent) in type B.

Examples

			For n=2, the Weyl group B_2 has 8 elements and is generated by {t,s} with s^2=t^2=(st)^4=1, the elements which have reduced words containing both s and t are st, ts, sts, tst and stst. The other three elements are 1, s, t. Therefore f(2)=5.
		

Crossrefs

Programs

  • Maple
    f:=k->coeff(series(add(2^n*n!*x^n,n=0..k)/add(n!*x^n,n=0..k),x,k+1),x,k);
  • Mathematica
    nmax = 20; CoefficientList[Assuming[Element[x, Reals], Series[1/2*Exp[1/(2*x)] * ExpIntegralEi[1/(2*x)] / ExpIntegralEi[1/x], {x, 0, nmax}]], x] (* Vaclav Kotesovec, Aug 05 2015 *)

Formula

O.g.f.: g(2x)/g(x) where g(x) = sum_{n>=0} n! x^n.
a(n) ~ n! * 2^n * (1 - 1/(2*n) - 1/(4*n^2) - 5/(8*n^3) - 35/(16*n^4) - 319/(32*n^5) - 3557/(64*n^6) - 46617/(128*n^7) - 699547/(256*n^8) - 11801263/(512*n^9) - 220778973/(1024*n^10)), for coefficients see A260952. - Vaclav Kotesovec, Jul 28 2015

Extensions

More terms from Vaclav Kotesovec, Aug 05 2015

A112225 Number of elements of a Weyl group of order 2^{n-1} n! of type D for which a reduced word contains all of the simple reflections.

Original entry on oeis.org

1, 13, 135, 1537, 19811, 289073, 4741923, 86705417, 1752264235, 38832482641, 937035652035, 24465531961465, 687363659349179, 20679220894484897, 663327190230305715, 22600083539456536457, 815088161465498630635
Offset: 2

Views

Author

Mike Zabrocki, Aug 28 2005

Keywords

Comments

This is an analog for type D of the concept of connected permutations (see A003319 and A109253).

Examples

			For n=2, the Weyl group of order 4 is generated by {s_0', s_1} with (s_0')^2=s_1^2 = (s_0' s_1)^2 = 1, s_0' s_1 is the only element with a reduced word containing both simple reflections (the other elements are 1, s_0' and s_1).
For n=3, the Weyl group of type D is isomorphic to S_4 where there are 13 'connected permutations' (see A003319).
		

Crossrefs

Programs

  • Maple
    f:=n->coeff(series((add(2^k*k!*x^k,k=1..n)+4)/add(2*k!*x^k,k=0..n)+x-2,x,n+1),x,n);
  • Mathematica
    nmax = 20; Rest[Rest[CoefficientList[Assuming[Element[x, Reals], Series[(Exp[1/(2*x)] * ExpIntegralEi[1/(2*x)] + 6*x*Exp[1/x]) / (4*ExpIntegralEi[1/x]) + x - 2, {x, 0, nmax}]], x]]] (* Vaclav Kotesovec, Aug 05 2015 after Martin and Kearney *)

Formula

G.f.: f(x) = (g(2x)+3)/(2 g(x)) + x - 2 where g(x) = sum_{n >= 0} n! x^n.
a(n) ~ n! * 2^(n-1) * (1 - 1/(2*n) - 1/(4*n^2) - 5/(8*n^3) - 35/(16*n^4) - 319/(32*n^5) - 3557/(64*n^6) - 46617/(128*n^7) - 699547/(256*n^8) - 11801263/(512*n^9) - 220778973/(1024*n^10)), for coefficients see A260952. - Vaclav Kotesovec, Jul 29 2015
Showing 1-2 of 2 results.