A260952
Coefficients in asymptotic expansion of the sequences A109253 and A112225.
Original entry on oeis.org
1, -1, -1, -5, -35, -319, -3557, -46617, -699547, -11801263, -220778973, -4532376577, -101246459811, -2444155497191, -63397685488165, -1758278168174137, -51920205021872395, -1626358286062507551, -53865503179448478605, -1880864793407486366353
Offset: 0
A109253(n)/(n!*2^n) ~ (1 - 1/(2*n) - 1/(4*n^2) - 5/(8*n^3) - 35/(16*n^4) - ...
A112225(n)/(n!*2^(n-1)) ~ (1 - 1/(2*n) - 1/(4*n^2) - 5/(8*n^3) - 35/(16*n^4) - ...
A112225
Number of elements of a Weyl group of order 2^{n-1} n! of type D for which a reduced word contains all of the simple reflections.
Original entry on oeis.org
1, 13, 135, 1537, 19811, 289073, 4741923, 86705417, 1752264235, 38832482641, 937035652035, 24465531961465, 687363659349179, 20679220894484897, 663327190230305715, 22600083539456536457, 815088161465498630635
Offset: 2
For n=2, the Weyl group of order 4 is generated by {s_0', s_1} with (s_0')^2=s_1^2 = (s_0' s_1)^2 = 1, s_0' s_1 is the only element with a reduced word containing both simple reflections (the other elements are 1, s_0' and s_1).
For n=3, the Weyl group of type D is isomorphic to S_4 where there are 13 'connected permutations' (see A003319).
- Vaclav Kotesovec, Table of n, a(n) for n = 2..400
- N. Bergeron, C. Hohlweg, M. Zabrocki, Posets related to the connectivity set of Coxeter groups, arXiv:math/0509271 [math.CO], 2005-2006.
- Richard J. Martin, and Michael J. Kearney, Integral representation of certain combinatorial recurrences, Combinatorica: 35:3 (2015), 309-315.
-
f:=n->coeff(series((add(2^k*k!*x^k,k=1..n)+4)/add(2*k!*x^k,k=0..n)+x-2,x,n+1),x,n);
-
nmax = 20; Rest[Rest[CoefficientList[Assuming[Element[x, Reals], Series[(Exp[1/(2*x)] * ExpIntegralEi[1/(2*x)] + 6*x*Exp[1/x]) / (4*ExpIntegralEi[1/x]) + x - 2, {x, 0, nmax}]], x]]] (* Vaclav Kotesovec, Aug 05 2015 after Martin and Kearney *)
A109281
Triangle T(n,k) of elements of n-th Weyl group of type B whose reduced word uses n-k generators.
Original entry on oeis.org
1, 1, 1, 5, 2, 1, 35, 9, 3, 1, 309, 56, 14, 4, 1, 3287, 443, 84, 20, 5, 1, 41005, 4298, 623, 120, 27, 6, 1, 588487, 49937, 5629, 859, 165, 35, 7, 1, 9571125, 680700, 61300, 7360, 1162, 220, 44, 8, 1, 174230863, 10683103, 793402, 75714, 9584, 1544, 286, 54, 9, 1
Offset: 0
T(3,1)=9 because B_3 is generated by {t,s1,s2} where t^2=s1^2=s2^2=(s1 s2)^3=(t s1)^4=(t s2)^2=1.
The 9 elements which only use 2 generators are {s1 s2, s1 s2 s1, s2 s1, s2 t, t s1, s1 t s1, s1 t s1 t, s1 t, t s1 t}.
Triangle starts:
1;
1, 1;
5, 2, 1;
35, 9, 3, 1;
309, 56, 14, 4, 1;
...
For the similar sequence in type D, see
A112226.
-
f:=proc(n,k) local gx; gx:=add(i!*x^i,i=0..n); coeff(series((1-1/gx)^k*subs(x=2*x,gx)/gx,x,n+1),x,n); end:
-
nmax = 9;
g[x_] = Sum[n!*x^n, {n, 0, nmax}];
gf[x_, t_] = g[2*x]/(t + (1 - t)*g[x]);
T[n_, k_] := SeriesCoefficient[gf[x, t], {x, 0, n}] // SeriesCoefficient[#, {t, 0, k}]&;
Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 25 2017 *)
A112226
Table T(n,k) of number of elements of Weyl group of type D of order 2^{n-1} n! such that a reduced word uses exactly n-k distinct simple reflections 0 <= k <= n, n>=1.
Original entry on oeis.org
0, 0, 1, 1, 2, 1, 13, 7, 3, 1, 135, 40, 12, 4, 1, 1537, 293, 66, 18, 5, 1, 19811, 2646, 451, 100, 25, 6, 1, 289073, 28887, 3753, 663, 143, 33, 7, 1, 4741923, 374820, 37798, 5232, 940, 196, 42, 8, 1, 86705417, 5676121, 457508, 49444, 7174, 1294, 260, 52, 9, 1
Offset: 0
D_3 is generated by {s_0,s_1,s_2} where s_0^2 = s_1^2 = s_2^2 = (s_0 s_1)^2 = (s_0 s_2)^3 = (s_1 s_2)^2, the elements of this group can be broken up into 4 sets with reduced words as {1}, {s_0, s_1, s_2}, {s_0 s_1, s_1 s_2, s_2 s_1, s_1 s_2 s_1, s_0 s_2, s_2 s_0, s_0 s_2 s_0} hence T(3,3)=1, T(3,2)=3 and T(3,1)=7. T(3,0)=13 since the remaining 13 elements will have reduced words where all three simple reflections appear.
-
f2:=proc(n,k) local i,gx,g2x; gx:=add(i!*x^i, i=0..n); g2x:=subs(x=2*x,gx); coeff(series(((g2x+3)/(2*gx) + x)*(1-1/gx)^k - x*(1-1/gx)^(k-1),x,n+1),x,n); end: f1:=n->coeff(series((add(2^k*k!*x^k,k=1..n)+4)/add(2*k!*x^k,k=0..n)+x-2,x,n+1),x,n); T:=(n,k)->if k=0 then f1(n) else f2(n,k) fi;
-
max = 10;
fA = 1 - 1/Sum[n!*x^n, {n, 0, max}] + O[x]^max;
fD = (3 + Sum[2^n*n!*x^n, {n, 0, max}])/(2*Sum[n!*x^n, {n, 0, max}]) + x - 2 + O[x]^max;
f = (2*t*fA - 2*t*x + t^2*x*fA + fD)/(1 - t*fA);
row[n_] := CoefficientList[ SeriesCoefficient[f, {x, 0, n}], t];
Join[{{0}}, {{0, 1}}, Table[row[n], {n, 2, max - 1}]] // Flatten (* Jean-François Alcover, Nov 28 2017 *)
Showing 1-4 of 4 results.
Comments