cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A260952 Coefficients in asymptotic expansion of the sequences A109253 and A112225.

Original entry on oeis.org

1, -1, -1, -5, -35, -319, -3557, -46617, -699547, -11801263, -220778973, -4532376577, -101246459811, -2444155497191, -63397685488165, -1758278168174137, -51920205021872395, -1626358286062507551, -53865503179448478605, -1880864793407486366353
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 05 2015

Keywords

Comments

The values 1,5,35,319,... also are the number of Feynman diagrams of the Green's function of 2,4,6,8,... vertices which have no tadpoles (i.e. no edges that connect a vertex to itself), a subset of the graphs in A000698, vixra:1901.0148. This is likely a random coincidence. - R. J. Mathar, Mar 07 2022

Examples

			A109253(n)/(n!*2^n) ~ (1 - 1/(2*n) - 1/(4*n^2) - 5/(8*n^3) - 35/(16*n^4) - ...
A112225(n)/(n!*2^(n-1)) ~ (1 - 1/(2*n) - 1/(4*n^2) - 5/(8*n^3) - 35/(16*n^4) - ...
		

Crossrefs

Formula

A109253(n)/(n!*2^n) ~ Sum_{k>=0} a(k)/(2*n)^k.
A112225(n)/(n!*2^(n-1)) ~ Sum_{k>=0} a(k)/(2*n)^k.
Conjecture: a(k) ~ -k! * 2^(k+1) / (9 * (log(3))^(k+1)).

A112225 Number of elements of a Weyl group of order 2^{n-1} n! of type D for which a reduced word contains all of the simple reflections.

Original entry on oeis.org

1, 13, 135, 1537, 19811, 289073, 4741923, 86705417, 1752264235, 38832482641, 937035652035, 24465531961465, 687363659349179, 20679220894484897, 663327190230305715, 22600083539456536457, 815088161465498630635
Offset: 2

Views

Author

Mike Zabrocki, Aug 28 2005

Keywords

Comments

This is an analog for type D of the concept of connected permutations (see A003319 and A109253).

Examples

			For n=2, the Weyl group of order 4 is generated by {s_0', s_1} with (s_0')^2=s_1^2 = (s_0' s_1)^2 = 1, s_0' s_1 is the only element with a reduced word containing both simple reflections (the other elements are 1, s_0' and s_1).
For n=3, the Weyl group of type D is isomorphic to S_4 where there are 13 'connected permutations' (see A003319).
		

Crossrefs

Programs

  • Maple
    f:=n->coeff(series((add(2^k*k!*x^k,k=1..n)+4)/add(2*k!*x^k,k=0..n)+x-2,x,n+1),x,n);
  • Mathematica
    nmax = 20; Rest[Rest[CoefficientList[Assuming[Element[x, Reals], Series[(Exp[1/(2*x)] * ExpIntegralEi[1/(2*x)] + 6*x*Exp[1/x]) / (4*ExpIntegralEi[1/x]) + x - 2, {x, 0, nmax}]], x]]] (* Vaclav Kotesovec, Aug 05 2015 after Martin and Kearney *)

Formula

G.f.: f(x) = (g(2x)+3)/(2 g(x)) + x - 2 where g(x) = sum_{n >= 0} n! x^n.
a(n) ~ n! * 2^(n-1) * (1 - 1/(2*n) - 1/(4*n^2) - 5/(8*n^3) - 35/(16*n^4) - 319/(32*n^5) - 3557/(64*n^6) - 46617/(128*n^7) - 699547/(256*n^8) - 11801263/(512*n^9) - 220778973/(1024*n^10)), for coefficients see A260952. - Vaclav Kotesovec, Jul 29 2015

A109281 Triangle T(n,k) of elements of n-th Weyl group of type B whose reduced word uses n-k generators.

Original entry on oeis.org

1, 1, 1, 5, 2, 1, 35, 9, 3, 1, 309, 56, 14, 4, 1, 3287, 443, 84, 20, 5, 1, 41005, 4298, 623, 120, 27, 6, 1, 588487, 49937, 5629, 859, 165, 35, 7, 1, 9571125, 680700, 61300, 7360, 1162, 220, 44, 8, 1, 174230863, 10683103, 793402, 75714, 9584, 1544, 286, 54, 9, 1
Offset: 0

Views

Author

Mike Zabrocki, Aug 19 2005

Keywords

Comments

Row sums are 2^n n!.
G.f. for k-th column is given by (1-1/g(x))^(k-1)*g(2x)/g(x).

Examples

			T(3,1)=9 because B_3 is generated by {t,s1,s2} where t^2=s1^2=s2^2=(s1 s2)^3=(t s1)^4=(t s2)^2=1.
The 9 elements which only use 2 generators are {s1 s2, s1 s2 s1, s2 s1, s2 t, t s1, s1 t s1, s1 t s1 t, s1 t, t s1 t}.
Triangle starts:
1;
1, 1;
5, 2, 1;
35, 9, 3, 1;
309, 56, 14, 4, 1;
...
		

Crossrefs

For the similar sequence in type D, see A112226.

Programs

  • Maple
    f:=proc(n,k) local gx; gx:=add(i!*x^i,i=0..n); coeff(series((1-1/gx)^k*subs(x=2*x,gx)/gx,x,n+1),x,n); end:
  • Mathematica
    nmax = 9;
    g[x_] = Sum[n!*x^n, {n, 0, nmax}];
    gf[x_, t_] = g[2*x]/(t + (1 - t)*g[x]);
    T[n_, k_] := SeriesCoefficient[gf[x, t], {x, 0, n}] // SeriesCoefficient[#, {t, 0, k}]&;
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 25 2017 *)

Formula

G.f.: g(2x)/(t+(1-t)g(x)) where g(x) = sum_{n>=0} n! x^n.

A112226 Table T(n,k) of number of elements of Weyl group of type D of order 2^{n-1} n! such that a reduced word uses exactly n-k distinct simple reflections 0 <= k <= n, n>=1.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 13, 7, 3, 1, 135, 40, 12, 4, 1, 1537, 293, 66, 18, 5, 1, 19811, 2646, 451, 100, 25, 6, 1, 289073, 28887, 3753, 663, 143, 33, 7, 1, 4741923, 374820, 37798, 5232, 940, 196, 42, 8, 1, 86705417, 5676121, 457508, 49444, 7174, 1294, 260, 52, 9, 1
Offset: 0

Views

Author

Mike Zabrocki, Aug 28 2005

Keywords

Comments

The first two rows of this table are not well-defined. This is an analog of the notion of permutations with k components for type D (see A059438)

Examples

			D_3 is generated by {s_0,s_1,s_2} where s_0^2 = s_1^2 = s_2^2 = (s_0 s_1)^2 = (s_0 s_2)^3 = (s_1 s_2)^2, the elements of this group can be broken up into 4 sets with reduced words as {1}, {s_0, s_1, s_2}, {s_0 s_1, s_1 s_2, s_2 s_1, s_1 s_2 s_1, s_0 s_2, s_2 s_0, s_0 s_2 s_0} hence T(3,3)=1, T(3,2)=3 and T(3,1)=7. T(3,0)=13 since the remaining 13 elements will have reduced words where all three simple reflections appear.
		

Crossrefs

Programs

  • Maple
    f2:=proc(n,k) local i,gx,g2x; gx:=add(i!*x^i, i=0..n); g2x:=subs(x=2*x,gx); coeff(series(((g2x+3)/(2*gx) + x)*(1-1/gx)^k - x*(1-1/gx)^(k-1),x,n+1),x,n); end: f1:=n->coeff(series((add(2^k*k!*x^k,k=1..n)+4)/add(2*k!*x^k,k=0..n)+x-2,x,n+1),x,n); T:=(n,k)->if k=0 then f1(n) else f2(n,k) fi;
  • Mathematica
    max = 10;
    fA = 1 - 1/Sum[n!*x^n, {n, 0, max}] + O[x]^max;
    fD = (3 + Sum[2^n*n!*x^n, {n, 0, max}])/(2*Sum[n!*x^n, {n, 0, max}]) + x - 2 + O[x]^max;
    f = (2*t*fA - 2*t*x + t^2*x*fA + fD)/(1 - t*fA);
    row[n_] := CoefficientList[ SeriesCoefficient[f, {x, 0, n}], t];
    Join[{{0}}, {{0, 1}}, Table[row[n], {n, 2, max - 1}]] // Flatten (* Jean-François Alcover, Nov 28 2017 *)

Formula

G.f.: (g(2x) - (2 t x - 4 t - 2 x + 4) g(x) - 4 t + 3)/(2(t + (1-t) g(x))) where g(x) = sum_{n >= 0} n! x^n o.g.f. for first column given by (g(2x)+3)/(2g(x)) + x - 2 o.g.f. for k^th (k>1) column given by ((g(2x)+3)/(2g(x)) + x)*(1-1/g(x))^{k-1} - x (1-1/g(x))^{k-2}
Showing 1-4 of 4 results.