cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260955 Differences of the increasing arithmetic progression a^2+a, b^2+b, c^2+c, where b = 5*a+2, c = 7*a+3 and a >= 0.

Original entry on oeis.org

6, 54, 150, 294, 486, 726, 1014, 1350, 1734, 2166, 2646, 3174, 3750, 4374, 5046, 5766, 6534, 7350, 8214, 9126, 10086, 11094, 12150, 13254, 14406, 15606, 16854, 18150, 19494, 20886, 22326, 23814, 25350, 26934, 28566, 30246, 31974, 33750, 35574, 37446, 39366, 41334
Offset: 0

Views

Author

Marco RipĂ , Aug 05 2015

Keywords

Examples

			By the definition, given a = 7 and b = 5*7+2 = 37, c = 7*7+3 = 52, it follows that a^2+a = 56, b^2+b = 1406, c^2+c = 2756, where 56, 1406, 2756 are in arithmetic progression. Therefore, 2756-1406 = 1406-56 = 1350 and 1350 is in the sequence (8th term).
		

Crossrefs

Second bisection of A033581 (the first bisection is A195824).

Programs

  • Magma
    [24*n^2+24*n+6: n in [0..40]]; // Vincenzo Librandi, Aug 05 2015
  • Mathematica
    Table[24 n^2 + 24 n + 6, {n, 0, 40}] (* Bruno Berselli, Aug 05 2015 *)
    LinearRecurrence[{3, -3, 1}, {6, 54, 150}, 50] (* Vincenzo Librandi, Aug 05 2015 *)
  • PARI
    Vec(6*(1+6*x+x^2)/(1-x)^3 + O(x^100)) \\ Colin Barker, Aug 05 2015
    

Formula

a(n) = 24*n^2 + 24*n + 6.
From Colin Barker, Aug 05 2015: (Start)
G.f.: 6*(1 + 6*x + x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Bruno Berselli, Aug 05 2015: (Start)
a(n) = A032528(4*n+2).
a(n)*(2*h-1)^2 = a((2*h-1)*n+h-1). For h=0, a(n) = a(-n-1); for h=7, 169*a(n) = a(13*n+6). (End)
From Elmo R. Oliveira, Dec 28 2024: (Start)
E.g.f.: 6*exp(x)*(1 + 8*x + 4*x^2).
a(n) = 6*A016754(n). (End)