A260966 a(0)=1, then a(n) is the least sum of two successive primes that is a multiple of n and > a(n-1).
1, 5, 8, 12, 24, 30, 36, 42, 112, 144, 210, 308, 360, 390, 434, 450, 480, 918, 990, 1064, 1120, 1428, 1518, 1656, 1848, 1900, 2132, 2430, 2604, 2610, 2640, 2728, 2912, 2970, 2992, 3010, 3240, 3330, 3952, 4056, 4680, 5740, 6090, 6450, 6600, 6660, 6762, 7990, 8256, 8428, 9000, 9282, 9308
Offset: 0
Keywords
Examples
a(1)=5=2+3, a(2)=8=3+5, a(3)=12=5+7, a(4)=24=11+13, a(5)=30=13+17.
Links
- Robert Israel, Table of n, a(n) for n = 0..4628
Programs
-
Maple
N:= 10^5: # get all terms using primes <= N Primes:= select(isprime,[2,(2*i+1 $ i=1..floor((N-1)/2))]): Sprimes:= Primes[1..-2] + Primes[2..-1]: A[0]:= 1: x[0]:= 0: ok:= true: for n from 1 while ok do ok:= false; for t from x[n-1]+1 to nops(Sprimes) do if Sprimes[t] mod n = 0 then A[n]:= Sprimes[t]; x[n]:= t; ok:= true; break fi od od: seq(A[i],i=0..n-2); # Robert Israel, Aug 06 2015
-
Mathematica
Prepend[Reap[n=1;Do[If[Mod[(a=Prime[k]+Prime[k+1]),n]<1,Sow[a];i++],{k,1000}]][[2,1]],1] nxt[{n_,a_}]:=Module[{sprs=Total/@Partition[Prime[Range[1000]],2,1]},{n+1, SelectFirst[sprs,Divisible[#,n+1]&>a&]}]; Transpose[ NestList[ nxt,{0,1},60]][[2]] (* Harvey P. Dale, Jun 02 2016 *)