cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260984 Coefficients of the mock theta function chibar(q).

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 8, 8, 8, 10, 10, 12, 12, 14, 16, 16, 18, 20, 22, 24, 26, 28, 30, 32, 36, 38, 40, 44, 48, 52, 56, 60, 64, 68, 74, 80, 84, 90, 96, 104, 110, 118, 126, 134, 144, 152, 162, 172, 184, 196, 208, 220, 234, 248
Offset: 0

Views

Author

Jeremy Lovejoy, Aug 06 2015

Keywords

Examples

			G.f. = 1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 4*x^8 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 17, 4th equation.

Programs

  • Maple
    N:= 200: # to get a(0) to a(N)
    M:= floor((sqrt(1+8*N)-1)/2):
    G:= 1 + 2*add(q^(n*(n+1)/2)*mul((1+q^i)^2,i=1..n-1)*(1+q^n)/mul(1+q^(3*i),i=1..n), n=1..M):
    S:= series(G,q,N+1):
    seq(coeff(S,q,j),j=0..N); # Robert Israel, Aug 06 2015
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], 2 SeriesCoefficient[ Sum[ x^(6 k^2) QPochhammer[ x^3, x^6, k] / QPochhammer[ x, x^2, 3 k + 1], {k, 0, Sqrt[n/6]}], {x, 0, n}]]; (* Michael Somos, Sep 13 2016 *)
    nmax = 100; CoefficientList[Series[1 + 2*Sum[x^(k*(k+1)/2) * Product[(1 + x^j), {j, 1, k-1}]^2 * (1 + x^k) / Product[(1 + x^(3*j)), {j, 1, k}], {k, 1, Floor[Sqrt[2*nmax]]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 12 2019 *)

Formula

G.f.: 1 + 2*Sum_{n >= 1} q^(n*(n+1)/2)*(1+q)^2*(1+q^2)^2*...*(1+q^(n-1))^2*(1+q^n)/((1+q^3)*(1+q^6)*...*(1+q^(3*n))).
G.f.: -1 + 2*(1/(1-x) + x^6/((1-x)*(1-x^5)*(1-x^7)) + x^24/((1-x)*(1-x^5)*(1-x^7)*(1-x^11)*(1-x^13)) + ...). [Ramanujan] - Michael Somos, Sep 13 2016
a(n) ~ exp(Pi*sqrt(n)/3) / sqrt(3*n). - Vaclav Kotesovec, Jun 12 2019