A260985 Numbers k such that A001222(k) - A001221(k) is an odd prime.
16, 48, 64, 72, 80, 81, 108, 112, 162, 176, 192, 200, 208, 240, 256, 272, 288, 304, 320, 336, 360, 368, 392, 405, 432, 448, 464, 496, 500, 504, 528, 540, 560, 567, 592, 600, 624, 625, 648, 656, 675, 688, 704, 729, 752, 756, 768, 792, 800, 810, 816, 832, 848
Offset: 1
Examples
16 is in the sequence because A001222(16) - A001221(16) = 3. 80 is in the sequence because A001222(80) - A001221(80) = 3. 192 is in the sequence because A001222(192) - A001221(192) = 5.
Links
Crossrefs
Programs
-
Mathematica
Select[Range[10^3], !PrimeQ[#] && PrimeQ[p = PrimeOmega[#] - PrimeNu[#]] && OddQ[p] &]
-
PARI
isok(n) = (d=bigomega(n)-omega(n)) && (d != 2) && isprime(d); \\ Michel Marcus, Aug 07 2015
-
Python
from sympy import isprime, primefactors def omega(n): return 0 if n==1 else len(primefactors(n)) def bigomega(n): return 0 if n==1 else bigomega(n//min(primefactors(n))) + 1 def ok(n): d = bigomega(n) - omega(n) return d%2 and isprime(d) print([n for n in range(1, 1001) if ok(n)]) # Indranil Ghosh, Apr 25 2017
Comments