cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260985 Numbers k such that A001222(k) - A001221(k) is an odd prime.

Original entry on oeis.org

16, 48, 64, 72, 80, 81, 108, 112, 162, 176, 192, 200, 208, 240, 256, 272, 288, 304, 320, 336, 360, 368, 392, 405, 432, 448, 464, 496, 500, 504, 528, 540, 560, 567, 592, 600, 624, 625, 648, 656, 675, 688, 704, 729, 752, 756, 768, 792, 800, 810, 816, 832, 848
Offset: 1

Views

Author

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0626525..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Examples

			16 is in the sequence because A001222(16) - A001221(16) = 3.
80 is in the sequence because A001222(80) - A001221(80) = 3.
192 is in the sequence because A001222(192) - A001221(192) = 5.
		

Crossrefs

Subsequence of A013929.
Subsequences: A195087, A195089, A195091.

Programs

  • Mathematica
    Select[Range[10^3], !PrimeQ[#] && PrimeQ[p = PrimeOmega[#] - PrimeNu[#]] && OddQ[p] &]
  • PARI
    isok(n) = (d=bigomega(n)-omega(n)) && (d != 2) && isprime(d); \\ Michel Marcus, Aug 07 2015
    
  • Python
    from sympy import isprime, primefactors
    def omega(n): return 0 if n==1 else len(primefactors(n))
    def bigomega(n): return 0 if n==1 else bigomega(n//min(primefactors(n))) + 1
    def ok(n):
        d = bigomega(n) - omega(n)
        return d%2 and isprime(d)
    print([n for n in range(1, 1001) if ok(n)]) # Indranil Ghosh, Apr 25 2017