A261017 a(n) = max k such that A261015(n,k) is not zero.
1, 3, 4, 5, 5, 7, 8, 9, 9, 9, 11, 11, 13, 15, 16, 17, 17, 17, 17, 19, 19, 19, 21, 21, 23, 23, 23, 27, 29, 31, 32, 33, 33, 33, 33, 33, 35, 35, 35, 35, 37, 37, 37, 39, 39, 39, 39, 41, 41, 43, 43, 45, 45, 45, 47, 47, 47, 47
Offset: 1
Programs
-
Haskell
a261017 = subtract 1 . length . a261019_row -- Reinhard Zumkeller, Aug 18 2015
-
Mathematica
(* This program is not suitable to compute more than a dozen terms. *) notVis[bits_] := For[i = 0, True, i++, If[SequencePosition[bits, IntegerDigits[i, 2]] == {}, Return[i]]]; T[n_, k_] := Select[Rest[IntegerDigits[#, 2]] & /@ Range[2^n, 2^(n+1) - 1], notVis[#] == k &] // Length; a[n_] := Do[If[T[n, k] > 0, Return[k]], {k, 2^n - 1, 0, -1}]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 12}] (* Jean-François Alcover, Aug 02 2018 *)
Extensions
a(5)-a(17) from Alois P. Heinz, Aug 17 2015
a(18)-a(25) from Reinhard Zumkeller, Aug 18 2015
a(26)-a(36) from Alois P. Heinz, Aug 19 2015
a(37)-a(58) from Hiroaki Yamanouchi, Aug 23 2015