A261020 Numbers k such that the set of the decimal digits is a subgroup of the multiplicative group (Z/mZ)* where m is the sum of the decimal digits of k.
11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 31, 41, 51, 61, 71, 81, 91, 111, 124, 139, 142, 193, 214, 241, 319, 391, 412, 421, 913, 931, 1111, 1115, 1133, 1151, 1155, 1177, 1199, 1248, 1284, 1313, 1331, 1379, 1397, 1428, 1482, 1511, 1515, 1551, 1717, 1739, 1771, 1793
Offset: 1
Examples
139 is a term because 1+3+9 = 13 and the elements {1, 3, 9} form a subgroup of the multiplicative group (Z/13Z)* with 12 elements. Each element is invertible: 1*1 == 1 (mod 13), 3*9 == 1 (mod 13) and 9*3 == 1 (mod 13). The other numbers of the sequence having the same property with (Z/13Z)* are 139, 193, 319, 391, 913, and 931. 1248 is in the sequence because 1+2+4+8 = 15 and the elements {1, 2, 4, 8} form a subgroup of the multiplicative group (Z/15Z)* with 8 elements: {1,2,4,7,8,11,13,14}.
Links
- Michel Lagneau and David A. Corneth, Table of n, a(n) for n = 1..10083 (all elements < 10^14, first 268 terms from Michel Lagneau)
- Eric Weisstein's World of Mathematics, Finite Group
- Wikipedia, Finite group
Programs
-
Maple
nn:=2000: for n from 1 to nn do: x:=convert(n,base,10):nn0:=length(n): lst1:={op(x),x[nn0]}:n0:=nops(lst1): s:=sum('x[i]', 'i'=1..nn0):lst:={}: if lst1[1]=1 then for j from 1 to n0 do: for l from j to n0 do: p:=irem(lst1[j]*lst1[l],s):lst:=lst union {p}: od: od: if lst=lst1 then n3:=nops(lst1):lst2:={}: for c from 1 to n3 do: for d from 1 to n3 do: if irem(lst1[c]*lst1[d], s)=1 then lst2:=lst2 union {lst1[c]}: else fi: od: od: if lst2=lst then printf(`%d, `, n): else fi: fi: fi: od:
-
Sage
def is_group(n): DD=n.digits() digsum=sum(DD) D=Set(DD) if not(1 in D) or 0 in D: return false for x in D: for y in D: if not(gcd(y,digsum)==1): return false if not((x*inverse_mod(y,digsum))%digsum in D): return false return true [n for n in [1..2000] if is_group(n)] # Tom Edgar, Aug 17 2015
Comments