A261021 a(1)=0; for n > 1, a(n) is the number k such that the set of the decimal digits is an additive group Z/mZ where m is the sum of the decimal digits.
0, 101, 102, 110, 120, 201, 202, 204, 210, 220, 240, 303, 306, 330, 360, 402, 404, 408, 420, 440, 480, 505, 550, 603, 606, 630, 660, 707, 770, 804, 808, 840, 880, 909, 990, 1001, 1002, 1010, 1020, 1100, 1200, 2001, 2002, 2004, 2010, 2020, 2040, 2100, 2200, 2400
Offset: 1
Examples
408 is in the sequence because 4+0+8 = 12 and the elements {0, 4, 8} is an additive group, subgroup of (Z/12Z,+) with 6 elements {0, 2, 4, 6, 8, 10}. Each element has an inverse: 2+10 == 0 (mod 12), 4+8 == 0 (mod 12), 6+6 == 0 (mod 12), 8+4 == 0 (mod 12) and 10+2 == 0 (mod 12). The subsequence having the same property with Z/12Z is {408, 480, 606, 660, 804, 840, 4008, 4080, 4800, 6006, 6060, 6600, 8004, 8040, 8400, 40008, 40080, 40800, 48000, 60006, 60060, 60600, 66000, 80004, 80040, 80400, 84000, ...}.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 281 terms from Michel Lagneau)
- Eric Weisstein's World of Mathematics, Finite Group
- Wikipedia, Finite group
Programs
-
Maple
nn:=3000: for n from 1 to nn do: x:=convert(n,base,10):nn0:=length(n): lst1:={op(x),x[nn0]}:n0:=nops(lst1): s:=sum('x[i]', 'i'=1..nn0):lst:={}: if lst1[1]=0 then for j from 1 to n0 do: for l from j to n0 do: p:=irem(lst1[j]+lst1[l],s):lst:=lst union {p}: od: od: if lst=lst1 then n3:=nops(lst1):lst2:={}: for c from 1 to n3 do: for d from 1 to n3 do: if irem(lst1[c]+lst1[d], s)=0 then lst2:=lst2 union {lst1[c]}: else fi: od: od: if lst2=lst then printf(`%d, `, n): else fi: fi: fi: od:
-
PARI
is(n) = {my(d = digits(n),s = Set(digits(n))); if(n==0,return(1)); if(#s==2 || #s==3,return(s[1]==0 && (s[#s] / s[2] == 2^(#s-2)) && hammingweight(d)==2),return(0))} \\a(n) works for n > 1. a(n) = {my(qd = ((-1 + sqrt(1 + 8*(n + 15+1/2) / 17)) / 2)\1 + 2, v = vector(qd),i=1,h=2); n -= (binomial(qd-1,2)*17 -16); while(n-(qd-1)*h>0, n-=(qd-1)*h;i++; h=1 + (i%2 == 0) + (i < 5)); n--; v[1]=i; v[qd-n\h] = i*2^(n%h-(i%2==0)); sum(i=1,#v,10^(#v-i)*v[i])} \\ David A. Corneth, Aug 13 2015
Formula
For d >= 3, there are (d - 1) * 17 terms having d digits. - David A. Corneth, Aug 13 2015
Comments