A261024 Decimal expansion of Cl_2(2*Pi/3), where Cl_2 is the Clausen function of order 2.
6, 7, 6, 6, 2, 7, 7, 3, 7, 6, 0, 6, 4, 3, 5, 7, 5, 0, 0, 1, 4, 1, 3, 5, 0, 3, 6, 1, 8, 3, 0, 1, 3, 5, 2, 3, 9, 6, 1, 1, 2, 6, 2, 0, 5, 0, 2, 0, 1, 9, 9, 8, 6, 1, 3, 4, 4, 9, 9, 2, 7, 3, 7, 8, 5, 1, 0, 6, 4, 9, 8, 4, 1, 7, 2, 1, 6, 2, 6, 8, 1, 4, 2, 4, 3, 1, 3, 5, 6, 9, 4, 8, 5, 5, 0, 4, 4, 6, 3, 2, 9, 7, 2, 4, 1
Offset: 0
Examples
0.676627737606435750014135036183013523961126205020199861344992737851...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Eric Weisstein's MathWorld, Clausen Function.
- Eric Weisstein's MathWorld, Clausen's Integral.
- Eric Weisstein's MathWorld, Barnes G-Function.
- Wikipedia, Clausen function.
- Wikipedia, Barnes G-function.
Crossrefs
Programs
-
Mathematica
Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); RealDigits[Cl2[2*Pi/3] // Re, 10, 105] // First
-
PARI
clausen(n, x) = my(z = polylog(n, exp(I*x))); if (n%2, real(z), imag(z)); clausen(2, 2*Pi/3) \\ Gheorghe Coserea, Sep 30 2018
Formula
Equals 2*Pi*log(G(2/3)/G(1/3)) - 2*Pi*LogGamma(1/3) + (2*Pi/3)*log(2*Pi/sqrt(3)), where G is the Barnes G function.