cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A261027 Decimal expansion of Cl_2(Pi/6), where Cl_2 is the Clausen function of order 2.

Original entry on oeis.org

8, 6, 4, 3, 7, 9, 1, 3, 1, 0, 5, 3, 8, 9, 2, 7, 4, 9, 6, 2, 5, 0, 3, 6, 3, 1, 5, 1, 9, 0, 2, 1, 9, 4, 7, 8, 6, 6, 8, 1, 8, 8, 5, 7, 6, 4, 0, 3, 6, 8, 9, 7, 0, 4, 1, 8, 2, 0, 3, 7, 6, 8, 9, 7, 7, 5, 3, 2, 4, 7, 1, 5, 5, 8, 2, 0, 6, 4, 1, 8, 5, 1, 8, 7, 0, 2, 1, 9, 3, 0, 5, 0, 7, 8, 0, 7, 5, 7, 7, 9, 0, 2, 1, 8
Offset: 0

Views

Author

Jean-François Alcover, Aug 07 2015

Keywords

Examples

			0.8643791310538927496250363151902194786681885764036897041820...
		

Crossrefs

Cf. A006752 (Cl_2(Pi/2) = Catalan's constant), A143298 (Cl_2(Pi/3) = Gieseking's constant), A261024 (Cl_2(2*Pi/3)), A261025 (Cl_2(Pi/4)), A261026 (Cl_2(3*Pi/4)), A261028 (Cl_2(5*Pi/6)).

Programs

  • Mathematica
    Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); RealDigits[Cl2[Pi/6] // Re, 10, 104] // First

Formula

Equals 2*Pi*log(G(11/12)/G(1/12)) - 2*Pi*LogGamma(1/12) + (Pi/6) * log(2*Pi*sqrt(2)/(sqrt(3)-1)), where G is the Barnes G function.

A261028 Decimal expansion of Cl_2(5*Pi/6), where Cl_2 is the Clausen function of order 2.

Original entry on oeis.org

3, 5, 6, 9, 0, 8, 3, 2, 7, 8, 4, 9, 0, 6, 5, 9, 3, 7, 1, 1, 4, 4, 3, 5, 0, 3, 8, 0, 5, 2, 9, 5, 9, 3, 3, 5, 6, 9, 7, 3, 4, 3, 9, 2, 2, 6, 3, 8, 5, 3, 9, 8, 0, 8, 1, 7, 3, 2, 9, 3, 1, 3, 6, 3, 8, 7, 0, 2, 5, 9, 7, 7, 4, 5, 2, 9, 4, 2, 1, 7, 4, 1, 1, 8, 7, 8, 6, 7, 5, 3, 3, 9, 3, 6, 7, 9, 2, 3, 0, 4, 2, 9, 2, 5
Offset: 0

Views

Author

Jean-François Alcover, Aug 07 2015

Keywords

Examples

			0.356908327849065937114435038052959335697343922638539808173...
		

Crossrefs

Cf. A006752 (Cl_2(Pi/2) = Catalan's constant), A143298 (Cl_2(Pi/3) = Gieseking's constant), A261024 (Cl_2(2*Pi/3)), A261025 (Cl_2(Pi/4)), A261026 (Cl_2(3*Pi/4)), A261027 (Cl_2(Pi/6)).

Programs

  • Mathematica
    Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); RealDigits[Cl2[5*Pi/6] // Re, 10, 104] // First

Formula

Equals 2*Pi*log(G(7/12)/G(5/12)) - 2*Pi*LogGamma(5/12) + (5*Pi/6) * log(2*Pi*sqrt(2)/(sqrt(3)+1)), where G is the Barnes G function.

A263416 a(n) = Product_{k=0..n} (3*k+1)^(n-k).

Original entry on oeis.org

1, 1, 4, 112, 31360, 114150400, 6648119296000, 7356542888181760000, 179090034163620983603200000, 108995627512253039588776345600000000, 1857397104331364341705287836001894400000000000, 981210407605679794692064339146706741991833600000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 17 2015

Keywords

Crossrefs

Programs

  • Maple
    A263416:=n->mul((3*k+1)^(n-k), k=0..n): seq(A263416(n), n=0..11); # Wesley Ivan Hurt, Nov 12 2015
  • Mathematica
    Table[Product[(3*k+1)^(n-k),{k,0,n}],{n,0,12}] (* or *)
    Table[1/FullSimplify[(Gamma[1/3]^((v-1)/3) / 3^((v-1)/18)) * Exp[Integrate[(E^((3-v)*x) - E^(2*x))/(x*(E^(3*x)-1)^2) + (v-1) * (1/(3*x*(E^(3*x)-1)) + 1/(6*x*E^(3*x)) - (v+1)/(18*x*E^x)), {x, 0, Infinity}]]], {v, 1, 34, 3}]
    Round@Table[3^(n(n+1)/2) BarnesG[n+4/3]/(BarnesG[1/3] Gamma[1/3]^(n+1)), {n, 0, 12}] (* Vladimir Reshetnikov, Nov 11 2015 *)
  • PARI
    a(n) = prod(k=0, n, (3*k+1)^(n-k)); \\ Michel Marcus, Nov 12 2015

Formula

a(n) ~ A^(1/3) * 2^(n/2 + 1/6) * 3^(n^2/2 + n/2 - 1/72) * n^(n^2/2 + n/3 - 1/36) * Pi^(n/2 + 1/6) / (Gamma(1/3)^(n + 1/3) * exp(3*n^2/4 + n/3 + Pi/(18*sqrt(3)) - PolyGamma(1, 1/3) / (12*sqrt(3)*Pi) + 1/36)), where A = A074962 is the Glaisher-Kinkelin constant and PolyGamma(1, 1/3) = 10.09559712542709408179200409989... (PolyGamma[1, 1/3] in Mathematica or Psi(1, 1/3) in Maple).
PolyGamma(1, 1/3) = 3^(3/2) * A261024 + 2*Pi^2/3.
From Vladimir Reshetnikov, Nov 11 2015: (Start)
a(n) = 3^(n*(n+1)/2) * G(n+4/3) / (G(1/3) * Gamma(1/3)^(n+1)), where G(x) is the Barnes G-function.
a(n) ~ 3^(n*(n+1)/2) * exp(-(9*n^2+4*n-1)/12) * n^((18*n^2+12*n-1)/36) * (2*Pi)^((3*n+1)/6) / (A * G(1/3) * Gamma(1/3)^(n+1)).
Note that G(1/3) = 3^(1/72) * exp(1/9 + Pi/(18*sqrt(3)) - PolyGamma(1, 1/3)/(12*sqrt(3)*Pi)) / (A^(4/3) * Gamma(1/3)^(2/3)).
(End)

A261025 Decimal expansion of Cl_2(Pi/4), where Cl_2 is the Clausen function of order 2.

Original entry on oeis.org

9, 8, 1, 8, 7, 2, 1, 5, 1, 0, 5, 0, 2, 0, 3, 3, 5, 6, 7, 1, 7, 9, 2, 4, 5, 4, 3, 0, 6, 0, 1, 9, 5, 6, 6, 7, 1, 3, 0, 7, 9, 0, 9, 7, 1, 6, 6, 0, 7, 3, 0, 4, 6, 1, 5, 7, 6, 6, 1, 3, 1, 3, 4, 6, 5, 3, 1, 5, 5, 6, 6, 5, 0, 4, 9, 7, 6, 9, 6, 3, 6, 2, 2, 4, 9, 0, 2, 8, 0, 2, 8, 8, 4, 3, 8, 7, 7, 2, 4, 1, 2, 3, 9, 9, 6
Offset: 0

Views

Author

Jean-François Alcover, Aug 07 2015

Keywords

Examples

			0.9818721510502033567179245430601956671307909716607304615766131...
		

Crossrefs

Cf. A006752 (Cl_2(Pi/2) = Catalan's constant), A143298 (Cl_2(Pi/3) = Gieseking's constant), A261024 (Cl_2(2*Pi/3)), A261026 (Cl_2(3*Pi/4)), A261027 (Cl_2(Pi/6)), A261028 (Cl_2(5*Pi/6)).

Programs

  • Mathematica
    Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); RealDigits[Cl2[Pi/4] // Re, 10, 105] // First

Formula

Equals 2*Pi*log(G(7/8)/G(1/8)) - 2*Pi*LogGamma(1/8) + (Pi/4) * log(2*Pi/sqrt(2-sqrt(2))), where G is the Barnes G function.

A261026 Decimal expansion of Cl_2(3*Pi/4), where Cl_2 is the Clausen function of order 2.

Original entry on oeis.org

5, 2, 3, 8, 8, 9, 3, 5, 3, 9, 6, 1, 5, 9, 3, 8, 4, 9, 1, 9, 0, 6, 2, 2, 7, 8, 5, 5, 9, 4, 0, 0, 3, 6, 1, 1, 7, 4, 3, 7, 1, 6, 2, 8, 4, 5, 1, 9, 8, 9, 4, 3, 9, 4, 4, 4, 3, 3, 6, 4, 0, 7, 4, 8, 4, 2, 2, 7, 4, 1, 5, 5, 1, 6, 1, 6, 4, 2, 2, 5, 1, 4, 8, 5, 2, 2, 4, 5, 4, 6, 4, 2, 1, 3, 3, 0, 1, 7, 0, 9, 9, 9, 7, 0, 9
Offset: 0

Views

Author

Jean-François Alcover, Aug 07 2015

Keywords

Examples

			0.52388935396159384919062278559400361174371628451989439444336407484...
		

Crossrefs

Cf. A006752 (Cl_2(Pi/2) = Catalan's constant), A143298 (Cl_2(Pi/3) = Gieseking's constant), A261024 (Cl_2(2*Pi/3)), A261025 (Cl_2(Pi/4)), A261027 (Cl_2(Pi/6)), A261028 (Cl_2(5*Pi/6)).

Programs

  • Mathematica
    Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); RealDigits[Cl2[3*Pi/4] // Re, 10, 105] // First

Formula

Equals 2*Pi*log(G(5/8)/G(3/8)) - 2*Pi*LogGamma(3/8) + (3*Pi/4) * log(2*Pi/sqrt(2+sqrt(2))), where G is the Barnes G function.

A263417 a(n) = Product_{k=0..n} (3*k+2)^(n-k).

Original entry on oeis.org

1, 2, 20, 1600, 1408000, 17346560000, 3633063526400000, 15218176499384320000000, 1466155647574283911168000000000, 3672576800382377947366110003200000000000, 266783946802402043703868836144710942720000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 17 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[(3*k+2)^(n-k),{k,0,n}],{n,0,12}]
    (* or *)
    Table[1/FullSimplify[Gamma[2/3]^((v-2)/3) * 3^((v-2)/18) * Exp[Integrate[(E^((3-v)*x) - E^x)/(x*(E^(3*x)-1)^2) + (v-2) * (1/(3*x*(E^(3*x)-1)) + 1/(6*x*E^(3*x)) - (v+2)/(18*x*E^x)), {x, 0, Infinity}]]], {v, 2, 35, 3}]
    Table[3^(n*(n+1)/2) * BarnesG[n + 5/3] / (BarnesG[2/3] * Gamma[2/3]^(n+1)), {n, 0, 12}] // Round (* Vaclav Kotesovec, Jan 23 2024 *)

Formula

a(n) ~ A^(1/3) * 2^(n/2 + 1/3) * 3^(n^2/2 + n/2 - 1/72) * Pi^(n/2 + 1/3) * n^(n^2/2 + 2*n/3 + 5/36) / (Gamma(2/3)^(n + 2/3) * exp(3*n^2/4 + 2*n/3 - Pi/(18*sqrt(3)) + PolyGamma(1, 1/3) / (12*sqrt(3)*Pi) + 1/36)), where A = A074962 is the Glaisher-Kinkelin constant and PolyGamma(1, 1/3) = 10.095597125427094081792004... (PolyGamma[1, 1/3] in Mathematica or Psi(1, 1/3) in Maple).
PolyGamma(1, 1/3) = 3^(3/2) * A261024 + 2*Pi^2/3.
a(n) = 3^(n*(n+1)/2) * BarnesG(n + 5/3) / (BarnesG(2/3) * Gamma(2/3)^(n+1)). - Vaclav Kotesovec, Jan 23 2024

A340826 Decimal expansion of Cl_2(Pi/5), where Cl_2 is the Clausen function of order 2.

Original entry on oeis.org

9, 2, 3, 7, 5, 5, 1, 6, 8, 1, 0, 0, 5, 3, 5, 3, 0, 8, 7, 1, 1, 9, 8, 6, 0, 2, 9, 7, 9, 3, 0, 2, 4, 3, 5, 3, 9, 6, 6, 2, 7, 9, 0, 0, 6, 4, 1, 2, 5, 1, 7, 2, 5, 1, 7, 0, 7, 7, 1, 2, 8, 4, 8, 3, 2, 5, 1, 5, 0, 9, 8, 3, 3, 2, 5, 3, 0, 9, 7, 5, 7, 2, 8, 7, 2, 8, 3, 2, 2, 1, 8, 0, 1, 1, 2, 2, 5, 9, 9, 9, 6, 2, 6, 3, 5
Offset: 0

Views

Author

Artur Jasinski, Jan 23 2021

Keywords

Examples

			0.9237551681005353087119860297930...
		

Crossrefs

Cf. A006752 (Cl_2(Pi/2) = Catalan's constant), A143298 (Cl_2(Pi/3) = Gieseking's constant), A261025 (Cl_2(Pi/4)), A261026 (Cl_2(3*Pi/4)), A261027 (Cl_2(Pi/6)), A261028 (Cl_2(5*Pi/6)), A340628, A340629.

Programs

  • Mathematica
    Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); RealDigits[Re[Cl2[Pi/5]], 10, 105] // First
    N[Pi*(ArcCsch[2] + Log[2*Pi*BarnesG[9/10]^10 / BarnesG[11/10]^10])/5, 120] (* Vaclav Kotesovec, Jan 23 2021 *)

Formula

A = Cl_2(Pi/5).
B = Cl_2(2*Pi/5).
C = Cl_2(3*Pi/5).
D = Cl_2(4*Pi/5).
4*(A^2 + C^2) = 5*(B^2 + D^2).
B = 2*A - 2*D.
D = 2*B - 2*C.
2*C = 4*A - 5*D.
B = -D + sqrt(A*(2*C+D)+D^2).
B^2 + D^2 = 4*Pi^4/(325*A340628^2).
B^2 + D^2 = (13/1125)*A340629^2*Pi^4.
Equals Pi*(2*log(G(9/10) / G(11/10)) + log(Pi*(1+sqrt(5)))/5), where G is the Barnes G-function. - Vaclav Kotesovec, Jan 23 2021
Showing 1-7 of 7 results.