cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A261024 Decimal expansion of Cl_2(2*Pi/3), where Cl_2 is the Clausen function of order 2.

Original entry on oeis.org

6, 7, 6, 6, 2, 7, 7, 3, 7, 6, 0, 6, 4, 3, 5, 7, 5, 0, 0, 1, 4, 1, 3, 5, 0, 3, 6, 1, 8, 3, 0, 1, 3, 5, 2, 3, 9, 6, 1, 1, 2, 6, 2, 0, 5, 0, 2, 0, 1, 9, 9, 8, 6, 1, 3, 4, 4, 9, 9, 2, 7, 3, 7, 8, 5, 1, 0, 6, 4, 9, 8, 4, 1, 7, 2, 1, 6, 2, 6, 8, 1, 4, 2, 4, 3, 1, 3, 5, 6, 9, 4, 8, 5, 5, 0, 4, 4, 6, 3, 2, 9, 7, 2, 4, 1
Offset: 0

Views

Author

Jean-François Alcover, Aug 07 2015

Keywords

Examples

			0.676627737606435750014135036183013523961126205020199861344992737851...
		

Crossrefs

Cf. A006752 (Cl_2(Pi/2) = Catalan's constant), A143298 (Cl_2(Pi/3) = Gieseking's constant), A261025 (Cl_2(Pi/4)), A261026 (Cl_2(3*Pi/4)), A261027 (Cl_2(Pi/6)), A261028 (Cl_2(5*Pi/6)).

Programs

  • Mathematica
    Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); RealDigits[Cl2[2*Pi/3] // Re, 10, 105] // First
  • PARI
    clausen(n, x) = my(z = polylog(n, exp(I*x))); if (n%2, real(z), imag(z));
    clausen(2, 2*Pi/3) \\ Gheorghe Coserea, Sep 30 2018

Formula

Equals 2*Pi*log(G(2/3)/G(1/3)) - 2*Pi*LogGamma(1/3) + (2*Pi/3)*log(2*Pi/sqrt(3)), where G is the Barnes G function.

A263414 Expansion of Product_{k>=1} 1/(1-x^(3*k+4))^k.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 1, 0, 4, 2, 0, 5, 6, 1, 6, 10, 2, 7, 19, 6, 9, 28, 14, 11, 44, 28, 16, 61, 52, 25, 87, 93, 45, 116, 153, 77, 160, 244, 141, 215, 376, 244, 301, 560, 422, 422, 817, 695, 617, 1173, 1132, 917, 1661, 1776, 1399, 2331
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 17 2015

Keywords

Comments

In general, if v>0, GCD(v,3)=1 and g.f. = Product_{k>=1} 1/(1-x^(3*k+v))^k, then
a(n) ~ d3(v) * 3^(v^2/27 - 8/9) * exp(-Pi^4 * v^2 / (3888*Zeta(3)) - v * Pi^2 * n^(1/3) / (2^(4/3) * 3^(7/3) * Zeta(3)^(1/3)) + 3^(1/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) * n^(v^2/54 - 25/36) / (sqrt(Pi) * 2^(v^2/54 + 11/36) * Zeta(3)^(v^2/54 - 7/36)), where
d3(v) = exp(Integral_{x=0..infinity} (exp((3-v)*x) / (exp(3*x)-1)^2 + (1/12 - v^2/18)/exp(x) - 1/(9*x^2) + v/(9*x))/x dx).
if mod(v,3)=1, then d3(v) = exp(A263031) * 2^((v+2)/6) * 3^((v+2)/18) * Pi^((v+2)/6) / (Gamma(1/3)^((v+2)/3) * A263416((v-1)/3)).
if mod(v,3)=2, then d3(v) = exp(A263030) * 2^((v+1)/6) * Pi^((v+1)/6) / (3^((v+1)/18) * Gamma(2/3)^((v+1)/3) * A263417((v-2)/3)).

Crossrefs

Cf. A262877, A262876, A263405 (v=1), A263406 (v=2), A263415 (v=5), A263031, A263416.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local r; `if`(n=0, 1,
           add(add(`if`(irem(d-3, 3, 'r')=1, d*r, 0)
           , d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..70);  # Alois P. Heinz, Oct 17 2015
  • Mathematica
    nmax = 80; CoefficientList[Series[Product[1/(1-x^(3*k+4))^k,{k,1,nmax}],{x,0,nmax}],x]
    nmax = 80; CoefficientList[Series[E^Sum[x^(7*k)/(k*(1-x^(3*k))^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^(7*k)/(k*(1-x^(3*k))^2)).
a(n) ~ c * exp(-Pi^4/(243*Zeta(3)) - 4*Pi^2 * n^(1/3) / (2^(4/3) * 3^(7/3) * Zeta(3)^(1/3)) + 3^(1/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (sqrt(Pi) * 2^(65/108) * 3^(8/27) * Zeta(3)^(11/108) * n^(43/108)), where c = exp(A263031) * 2 * 3^(1/3) * Pi / Gamma(1/3)^2 = 1.24446091929106216111829684663735422946506...

A263415 Expansion of Product_{k>=1} 1/(1-x^(3*k+5))^k.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 1, 4, 0, 2, 5, 0, 6, 6, 1, 10, 7, 2, 19, 8, 6, 28, 10, 14, 44, 12, 28, 60, 17, 52, 86, 26, 93, 112, 46, 152, 152, 78, 243, 196, 142, 372, 264, 244, 552, 350, 422, 798, 486, 692, 1136, 680, 1125, 1582, 997, 1758
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 17 2015

Keywords

Comments

In general, if v>0, GCD(v,3)=1 and g.f. = Product_{k>=1} 1/(1-x^(3*k+v))^k, then
a(n) ~ d3(v) * 3^(v^2/27 - 8/9) * exp(-Pi^4 * v^2 / (3888*Zeta(3)) - v * Pi^2 * n^(1/3) / (2^(4/3) * 3^(7/3) * Zeta(3)^(1/3)) + 3^(1/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) * n^(v^2/54 - 25/36) / (sqrt(Pi) * 2^(v^2/54 + 11/36) * Zeta(3)^(v^2/54 - 7/36)), where
d3(v) = exp(Integral_{x=0..infinity} (exp((3-v)*x) / (exp(3*x)-1)^2 + (1/12 - v^2/18)/exp(x) - 1/(9*x^2) + v/(9*x))/x dx).
if mod(v,3)=1, then d3(v) = exp(A263031) * 2^((v+2)/6) * 3^((v+2)/18) * Pi^((v+2)/6) / (Gamma(1/3)^((v+2)/3) * A263416((v-1)/3)).
if mod(v,3)=2, then d3(v) = exp(A263030) * 2^((v+1)/6) * Pi^((v+1)/6) / (3^((v+1)/18) * Gamma(2/3)^((v+1)/3) * A263417((v-2)/3)).

Crossrefs

Cf. A262877, A262876, A263405 (v=1), A263406 (v=2), A263414 (v=4), A263030, A263417.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local r; `if`(n=0, 1,
           add(add(`if`(irem(d-3, 3, 'r')=2, d*r, 0)
            , d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..70);  # Alois P. Heinz, Oct 17 2015
  • Mathematica
    nmax = 80; CoefficientList[Series[Product[1/(1-x^(3*k+5))^k,{k,1,nmax}],{x,0,nmax}],x]
    nmax = 80; CoefficientList[Series[E^Sum[x^(8*k)/(k*(1-x^(3*k))^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^(8*k)/(k*(1-x^(3*k))^2)).
a(n) ~ c * 3^(1/27) * exp(-25*Pi^4 / (3888*Zeta(3)) - 5*Pi^2 * n^(1/3) / (2^(4/3) * 3^(7/3) * Zeta(3)^(1/3)) + 3^(1/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (sqrt(Pi) * 2^(83/108) * Zeta(3)^(29/108) * n^(25/108)), where c = exp(A263030) * Pi / (3^(1/3) * Gamma(2/3)^2) = 0.98365214791227284535715328899346961376609...

A263417 a(n) = Product_{k=0..n} (3*k+2)^(n-k).

Original entry on oeis.org

1, 2, 20, 1600, 1408000, 17346560000, 3633063526400000, 15218176499384320000000, 1466155647574283911168000000000, 3672576800382377947366110003200000000000, 266783946802402043703868836144710942720000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 17 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[(3*k+2)^(n-k),{k,0,n}],{n,0,12}]
    (* or *)
    Table[1/FullSimplify[Gamma[2/3]^((v-2)/3) * 3^((v-2)/18) * Exp[Integrate[(E^((3-v)*x) - E^x)/(x*(E^(3*x)-1)^2) + (v-2) * (1/(3*x*(E^(3*x)-1)) + 1/(6*x*E^(3*x)) - (v+2)/(18*x*E^x)), {x, 0, Infinity}]]], {v, 2, 35, 3}]
    Table[3^(n*(n+1)/2) * BarnesG[n + 5/3] / (BarnesG[2/3] * Gamma[2/3]^(n+1)), {n, 0, 12}] // Round (* Vaclav Kotesovec, Jan 23 2024 *)

Formula

a(n) ~ A^(1/3) * 2^(n/2 + 1/3) * 3^(n^2/2 + n/2 - 1/72) * Pi^(n/2 + 1/3) * n^(n^2/2 + 2*n/3 + 5/36) / (Gamma(2/3)^(n + 2/3) * exp(3*n^2/4 + 2*n/3 - Pi/(18*sqrt(3)) + PolyGamma(1, 1/3) / (12*sqrt(3)*Pi) + 1/36)), where A = A074962 is the Glaisher-Kinkelin constant and PolyGamma(1, 1/3) = 10.095597125427094081792004... (PolyGamma[1, 1/3] in Mathematica or Psi(1, 1/3) in Maple).
PolyGamma(1, 1/3) = 3^(3/2) * A261024 + 2*Pi^2/3.
a(n) = 3^(n*(n+1)/2) * BarnesG(n + 5/3) / (BarnesG(2/3) * Gamma(2/3)^(n+1)). - Vaclav Kotesovec, Jan 23 2024

A369468 a(n) = Product_{k=0..n} ((3*k+1)*(3*k+2))^(n-k).

Original entry on oeis.org

1, 2, 80, 179200, 44154880000, 1980116762624000000, 24153039733453645414400000000, 111953168097640511435244254003200000000000, 262573865013264352348221085395200893360537600000000000000, 400294812944619753243237971399105071635747117771700305920000000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[((3*k+1)*(3*k+2))^(n-k), {k, 0, n}], {n, 0, 10}]
    Round[Table[3^(n^2 + 3*n/2 + 1/2) * BarnesG[n + 4/3] * BarnesG[n + 5/3] / (BarnesG[1/3] * BarnesG[2/3] * (2*Pi)^(n+1)), {n, 0, 10}]]
    Round[Table[Glaisher^(8/3) * Gamma[1/3]^(1/3) * BarnesG[n + 4/3] * BarnesG[n + 5/3] * 3^(n^2 + 3*n/2 + 11/36) / (Exp[2/9] * (2*Pi)^(n + 2/3)), {n, 0, 10}]]

Formula

a(n) ~ A^(2/3) * Gamma(1/3)^(1/3) * 3^(n^2 + 3*n/2 + 11/36) * n^(n^2 + n + 1/9) / ((2*Pi)^(1/6) * exp(3*n^2/2 + n + 1/18)), where A is the Glaisher-Kinkelin constant A074962.
a(n) = A263416(n) * A263417(n).
a(n) = 3^(n^2 + 3*n/2 + 1/2) * BarnesG(n + 4/3) * BarnesG(n + 5/3) / (BarnesG(1/3) * BarnesG(2/3) * (2*Pi)^(n+1)).

A263430 a(n) = Product_{k=0..n} (4*k+1)^(n-k).

Original entry on oeis.org

1, 1, 5, 225, 131625, 1309010625, 273380323978125, 1427352844030287890625, 216119240915841469025244140625, 1079864992142473709995957417730712890625, 199639840782299404795675492100337942688751220703125
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 18 2015

Keywords

Crossrefs

Programs

  • Magma
    [(&*[(4*k+1)^(n-k): k in [0..n]]): n in [0..10]]; // G. C. Greubel, Aug 25 2018
  • Mathematica
    Table[Product[(4*k+1)^(n-k),{k,0,n}],{n,0,10}]
  • PARI
    for(n=0,10, print1(prod(k=0,n, (4*k+1)^(n-k)), ", ")) \\ G. C. Greubel, Aug 25 2018
    

Formula

a(n) ~ A^(1/8) * 2^(n^2 + 3*n/2 + 1/8) * Pi^(n/2 + 1/8) * n^(n^2/2 + n/4 - 5/96) / (Gamma(1/4)^(n + 1/4) * exp(3*n^2/4 + n/4 + 1/96 - C/(4*Pi))), where A = A074962 is the Glaisher-Kinkelin constant and C = A006752 = is Catalan's constant.
Showing 1-6 of 6 results.