cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A261024 Decimal expansion of Cl_2(2*Pi/3), where Cl_2 is the Clausen function of order 2.

Original entry on oeis.org

6, 7, 6, 6, 2, 7, 7, 3, 7, 6, 0, 6, 4, 3, 5, 7, 5, 0, 0, 1, 4, 1, 3, 5, 0, 3, 6, 1, 8, 3, 0, 1, 3, 5, 2, 3, 9, 6, 1, 1, 2, 6, 2, 0, 5, 0, 2, 0, 1, 9, 9, 8, 6, 1, 3, 4, 4, 9, 9, 2, 7, 3, 7, 8, 5, 1, 0, 6, 4, 9, 8, 4, 1, 7, 2, 1, 6, 2, 6, 8, 1, 4, 2, 4, 3, 1, 3, 5, 6, 9, 4, 8, 5, 5, 0, 4, 4, 6, 3, 2, 9, 7, 2, 4, 1
Offset: 0

Views

Author

Jean-François Alcover, Aug 07 2015

Keywords

Examples

			0.676627737606435750014135036183013523961126205020199861344992737851...
		

Crossrefs

Cf. A006752 (Cl_2(Pi/2) = Catalan's constant), A143298 (Cl_2(Pi/3) = Gieseking's constant), A261025 (Cl_2(Pi/4)), A261026 (Cl_2(3*Pi/4)), A261027 (Cl_2(Pi/6)), A261028 (Cl_2(5*Pi/6)).

Programs

  • Mathematica
    Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); RealDigits[Cl2[2*Pi/3] // Re, 10, 105] // First
  • PARI
    clausen(n, x) = my(z = polylog(n, exp(I*x))); if (n%2, real(z), imag(z));
    clausen(2, 2*Pi/3) \\ Gheorghe Coserea, Sep 30 2018

Formula

Equals 2*Pi*log(G(2/3)/G(1/3)) - 2*Pi*LogGamma(1/3) + (2*Pi/3)*log(2*Pi/sqrt(3)), where G is the Barnes G function.

A263416 a(n) = Product_{k=0..n} (3*k+1)^(n-k).

Original entry on oeis.org

1, 1, 4, 112, 31360, 114150400, 6648119296000, 7356542888181760000, 179090034163620983603200000, 108995627512253039588776345600000000, 1857397104331364341705287836001894400000000000, 981210407605679794692064339146706741991833600000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 17 2015

Keywords

Crossrefs

Programs

  • Maple
    A263416:=n->mul((3*k+1)^(n-k), k=0..n): seq(A263416(n), n=0..11); # Wesley Ivan Hurt, Nov 12 2015
  • Mathematica
    Table[Product[(3*k+1)^(n-k),{k,0,n}],{n,0,12}] (* or *)
    Table[1/FullSimplify[(Gamma[1/3]^((v-1)/3) / 3^((v-1)/18)) * Exp[Integrate[(E^((3-v)*x) - E^(2*x))/(x*(E^(3*x)-1)^2) + (v-1) * (1/(3*x*(E^(3*x)-1)) + 1/(6*x*E^(3*x)) - (v+1)/(18*x*E^x)), {x, 0, Infinity}]]], {v, 1, 34, 3}]
    Round@Table[3^(n(n+1)/2) BarnesG[n+4/3]/(BarnesG[1/3] Gamma[1/3]^(n+1)), {n, 0, 12}] (* Vladimir Reshetnikov, Nov 11 2015 *)
  • PARI
    a(n) = prod(k=0, n, (3*k+1)^(n-k)); \\ Michel Marcus, Nov 12 2015

Formula

a(n) ~ A^(1/3) * 2^(n/2 + 1/6) * 3^(n^2/2 + n/2 - 1/72) * n^(n^2/2 + n/3 - 1/36) * Pi^(n/2 + 1/6) / (Gamma(1/3)^(n + 1/3) * exp(3*n^2/4 + n/3 + Pi/(18*sqrt(3)) - PolyGamma(1, 1/3) / (12*sqrt(3)*Pi) + 1/36)), where A = A074962 is the Glaisher-Kinkelin constant and PolyGamma(1, 1/3) = 10.09559712542709408179200409989... (PolyGamma[1, 1/3] in Mathematica or Psi(1, 1/3) in Maple).
PolyGamma(1, 1/3) = 3^(3/2) * A261024 + 2*Pi^2/3.
From Vladimir Reshetnikov, Nov 11 2015: (Start)
a(n) = 3^(n*(n+1)/2) * G(n+4/3) / (G(1/3) * Gamma(1/3)^(n+1)), where G(x) is the Barnes G-function.
a(n) ~ 3^(n*(n+1)/2) * exp(-(9*n^2+4*n-1)/12) * n^((18*n^2+12*n-1)/36) * (2*Pi)^((3*n+1)/6) / (A * G(1/3) * Gamma(1/3)^(n+1)).
Note that G(1/3) = 3^(1/72) * exp(1/9 + Pi/(18*sqrt(3)) - PolyGamma(1, 1/3)/(12*sqrt(3)*Pi)) / (A^(4/3) * Gamma(1/3)^(2/3)).
(End)

A263414 Expansion of Product_{k>=1} 1/(1-x^(3*k+4))^k.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 1, 0, 4, 2, 0, 5, 6, 1, 6, 10, 2, 7, 19, 6, 9, 28, 14, 11, 44, 28, 16, 61, 52, 25, 87, 93, 45, 116, 153, 77, 160, 244, 141, 215, 376, 244, 301, 560, 422, 422, 817, 695, 617, 1173, 1132, 917, 1661, 1776, 1399, 2331
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 17 2015

Keywords

Comments

In general, if v>0, GCD(v,3)=1 and g.f. = Product_{k>=1} 1/(1-x^(3*k+v))^k, then
a(n) ~ d3(v) * 3^(v^2/27 - 8/9) * exp(-Pi^4 * v^2 / (3888*Zeta(3)) - v * Pi^2 * n^(1/3) / (2^(4/3) * 3^(7/3) * Zeta(3)^(1/3)) + 3^(1/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) * n^(v^2/54 - 25/36) / (sqrt(Pi) * 2^(v^2/54 + 11/36) * Zeta(3)^(v^2/54 - 7/36)), where
d3(v) = exp(Integral_{x=0..infinity} (exp((3-v)*x) / (exp(3*x)-1)^2 + (1/12 - v^2/18)/exp(x) - 1/(9*x^2) + v/(9*x))/x dx).
if mod(v,3)=1, then d3(v) = exp(A263031) * 2^((v+2)/6) * 3^((v+2)/18) * Pi^((v+2)/6) / (Gamma(1/3)^((v+2)/3) * A263416((v-1)/3)).
if mod(v,3)=2, then d3(v) = exp(A263030) * 2^((v+1)/6) * Pi^((v+1)/6) / (3^((v+1)/18) * Gamma(2/3)^((v+1)/3) * A263417((v-2)/3)).

Crossrefs

Cf. A262877, A262876, A263405 (v=1), A263406 (v=2), A263415 (v=5), A263031, A263416.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local r; `if`(n=0, 1,
           add(add(`if`(irem(d-3, 3, 'r')=1, d*r, 0)
           , d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..70);  # Alois P. Heinz, Oct 17 2015
  • Mathematica
    nmax = 80; CoefficientList[Series[Product[1/(1-x^(3*k+4))^k,{k,1,nmax}],{x,0,nmax}],x]
    nmax = 80; CoefficientList[Series[E^Sum[x^(7*k)/(k*(1-x^(3*k))^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^(7*k)/(k*(1-x^(3*k))^2)).
a(n) ~ c * exp(-Pi^4/(243*Zeta(3)) - 4*Pi^2 * n^(1/3) / (2^(4/3) * 3^(7/3) * Zeta(3)^(1/3)) + 3^(1/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (sqrt(Pi) * 2^(65/108) * 3^(8/27) * Zeta(3)^(11/108) * n^(43/108)), where c = exp(A263031) * 2 * 3^(1/3) * Pi / Gamma(1/3)^2 = 1.24446091929106216111829684663735422946506...

A263415 Expansion of Product_{k>=1} 1/(1-x^(3*k+5))^k.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 1, 4, 0, 2, 5, 0, 6, 6, 1, 10, 7, 2, 19, 8, 6, 28, 10, 14, 44, 12, 28, 60, 17, 52, 86, 26, 93, 112, 46, 152, 152, 78, 243, 196, 142, 372, 264, 244, 552, 350, 422, 798, 486, 692, 1136, 680, 1125, 1582, 997, 1758
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 17 2015

Keywords

Comments

In general, if v>0, GCD(v,3)=1 and g.f. = Product_{k>=1} 1/(1-x^(3*k+v))^k, then
a(n) ~ d3(v) * 3^(v^2/27 - 8/9) * exp(-Pi^4 * v^2 / (3888*Zeta(3)) - v * Pi^2 * n^(1/3) / (2^(4/3) * 3^(7/3) * Zeta(3)^(1/3)) + 3^(1/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) * n^(v^2/54 - 25/36) / (sqrt(Pi) * 2^(v^2/54 + 11/36) * Zeta(3)^(v^2/54 - 7/36)), where
d3(v) = exp(Integral_{x=0..infinity} (exp((3-v)*x) / (exp(3*x)-1)^2 + (1/12 - v^2/18)/exp(x) - 1/(9*x^2) + v/(9*x))/x dx).
if mod(v,3)=1, then d3(v) = exp(A263031) * 2^((v+2)/6) * 3^((v+2)/18) * Pi^((v+2)/6) / (Gamma(1/3)^((v+2)/3) * A263416((v-1)/3)).
if mod(v,3)=2, then d3(v) = exp(A263030) * 2^((v+1)/6) * Pi^((v+1)/6) / (3^((v+1)/18) * Gamma(2/3)^((v+1)/3) * A263417((v-2)/3)).

Crossrefs

Cf. A262877, A262876, A263405 (v=1), A263406 (v=2), A263414 (v=4), A263030, A263417.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local r; `if`(n=0, 1,
           add(add(`if`(irem(d-3, 3, 'r')=2, d*r, 0)
            , d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..70);  # Alois P. Heinz, Oct 17 2015
  • Mathematica
    nmax = 80; CoefficientList[Series[Product[1/(1-x^(3*k+5))^k,{k,1,nmax}],{x,0,nmax}],x]
    nmax = 80; CoefficientList[Series[E^Sum[x^(8*k)/(k*(1-x^(3*k))^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^(8*k)/(k*(1-x^(3*k))^2)).
a(n) ~ c * 3^(1/27) * exp(-25*Pi^4 / (3888*Zeta(3)) - 5*Pi^2 * n^(1/3) / (2^(4/3) * 3^(7/3) * Zeta(3)^(1/3)) + 3^(1/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (sqrt(Pi) * 2^(83/108) * Zeta(3)^(29/108) * n^(25/108)), where c = exp(A263030) * Pi / (3^(1/3) * Gamma(2/3)^2) = 0.98365214791227284535715328899346961376609...

A369468 a(n) = Product_{k=0..n} ((3*k+1)*(3*k+2))^(n-k).

Original entry on oeis.org

1, 2, 80, 179200, 44154880000, 1980116762624000000, 24153039733453645414400000000, 111953168097640511435244254003200000000000, 262573865013264352348221085395200893360537600000000000000, 400294812944619753243237971399105071635747117771700305920000000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[((3*k+1)*(3*k+2))^(n-k), {k, 0, n}], {n, 0, 10}]
    Round[Table[3^(n^2 + 3*n/2 + 1/2) * BarnesG[n + 4/3] * BarnesG[n + 5/3] / (BarnesG[1/3] * BarnesG[2/3] * (2*Pi)^(n+1)), {n, 0, 10}]]
    Round[Table[Glaisher^(8/3) * Gamma[1/3]^(1/3) * BarnesG[n + 4/3] * BarnesG[n + 5/3] * 3^(n^2 + 3*n/2 + 11/36) / (Exp[2/9] * (2*Pi)^(n + 2/3)), {n, 0, 10}]]

Formula

a(n) ~ A^(2/3) * Gamma(1/3)^(1/3) * 3^(n^2 + 3*n/2 + 11/36) * n^(n^2 + n + 1/9) / ((2*Pi)^(1/6) * exp(3*n^2/2 + n + 1/18)), where A is the Glaisher-Kinkelin constant A074962.
a(n) = A263416(n) * A263417(n).
a(n) = 3^(n^2 + 3*n/2 + 1/2) * BarnesG(n + 4/3) * BarnesG(n + 5/3) / (BarnesG(1/3) * BarnesG(2/3) * (2*Pi)^(n+1)).
Showing 1-5 of 5 results.