cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A261024 Decimal expansion of Cl_2(2*Pi/3), where Cl_2 is the Clausen function of order 2.

Original entry on oeis.org

6, 7, 6, 6, 2, 7, 7, 3, 7, 6, 0, 6, 4, 3, 5, 7, 5, 0, 0, 1, 4, 1, 3, 5, 0, 3, 6, 1, 8, 3, 0, 1, 3, 5, 2, 3, 9, 6, 1, 1, 2, 6, 2, 0, 5, 0, 2, 0, 1, 9, 9, 8, 6, 1, 3, 4, 4, 9, 9, 2, 7, 3, 7, 8, 5, 1, 0, 6, 4, 9, 8, 4, 1, 7, 2, 1, 6, 2, 6, 8, 1, 4, 2, 4, 3, 1, 3, 5, 6, 9, 4, 8, 5, 5, 0, 4, 4, 6, 3, 2, 9, 7, 2, 4, 1
Offset: 0

Views

Author

Jean-François Alcover, Aug 07 2015

Keywords

Examples

			0.676627737606435750014135036183013523961126205020199861344992737851...
		

Crossrefs

Cf. A006752 (Cl_2(Pi/2) = Catalan's constant), A143298 (Cl_2(Pi/3) = Gieseking's constant), A261025 (Cl_2(Pi/4)), A261026 (Cl_2(3*Pi/4)), A261027 (Cl_2(Pi/6)), A261028 (Cl_2(5*Pi/6)).

Programs

  • Mathematica
    Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); RealDigits[Cl2[2*Pi/3] // Re, 10, 105] // First
  • PARI
    clausen(n, x) = my(z = polylog(n, exp(I*x))); if (n%2, real(z), imag(z));
    clausen(2, 2*Pi/3) \\ Gheorghe Coserea, Sep 30 2018

Formula

Equals 2*Pi*log(G(2/3)/G(1/3)) - 2*Pi*LogGamma(1/3) + (2*Pi/3)*log(2*Pi/sqrt(3)), where G is the Barnes G function.

A261027 Decimal expansion of Cl_2(Pi/6), where Cl_2 is the Clausen function of order 2.

Original entry on oeis.org

8, 6, 4, 3, 7, 9, 1, 3, 1, 0, 5, 3, 8, 9, 2, 7, 4, 9, 6, 2, 5, 0, 3, 6, 3, 1, 5, 1, 9, 0, 2, 1, 9, 4, 7, 8, 6, 6, 8, 1, 8, 8, 5, 7, 6, 4, 0, 3, 6, 8, 9, 7, 0, 4, 1, 8, 2, 0, 3, 7, 6, 8, 9, 7, 7, 5, 3, 2, 4, 7, 1, 5, 5, 8, 2, 0, 6, 4, 1, 8, 5, 1, 8, 7, 0, 2, 1, 9, 3, 0, 5, 0, 7, 8, 0, 7, 5, 7, 7, 9, 0, 2, 1, 8
Offset: 0

Views

Author

Jean-François Alcover, Aug 07 2015

Keywords

Examples

			0.8643791310538927496250363151902194786681885764036897041820...
		

Crossrefs

Cf. A006752 (Cl_2(Pi/2) = Catalan's constant), A143298 (Cl_2(Pi/3) = Gieseking's constant), A261024 (Cl_2(2*Pi/3)), A261025 (Cl_2(Pi/4)), A261026 (Cl_2(3*Pi/4)), A261028 (Cl_2(5*Pi/6)).

Programs

  • Mathematica
    Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); RealDigits[Cl2[Pi/6] // Re, 10, 104] // First

Formula

Equals 2*Pi*log(G(11/12)/G(1/12)) - 2*Pi*LogGamma(1/12) + (Pi/6) * log(2*Pi*sqrt(2)/(sqrt(3)-1)), where G is the Barnes G function.

A261025 Decimal expansion of Cl_2(Pi/4), where Cl_2 is the Clausen function of order 2.

Original entry on oeis.org

9, 8, 1, 8, 7, 2, 1, 5, 1, 0, 5, 0, 2, 0, 3, 3, 5, 6, 7, 1, 7, 9, 2, 4, 5, 4, 3, 0, 6, 0, 1, 9, 5, 6, 6, 7, 1, 3, 0, 7, 9, 0, 9, 7, 1, 6, 6, 0, 7, 3, 0, 4, 6, 1, 5, 7, 6, 6, 1, 3, 1, 3, 4, 6, 5, 3, 1, 5, 5, 6, 6, 5, 0, 4, 9, 7, 6, 9, 6, 3, 6, 2, 2, 4, 9, 0, 2, 8, 0, 2, 8, 8, 4, 3, 8, 7, 7, 2, 4, 1, 2, 3, 9, 9, 6
Offset: 0

Views

Author

Jean-François Alcover, Aug 07 2015

Keywords

Examples

			0.9818721510502033567179245430601956671307909716607304615766131...
		

Crossrefs

Cf. A006752 (Cl_2(Pi/2) = Catalan's constant), A143298 (Cl_2(Pi/3) = Gieseking's constant), A261024 (Cl_2(2*Pi/3)), A261026 (Cl_2(3*Pi/4)), A261027 (Cl_2(Pi/6)), A261028 (Cl_2(5*Pi/6)).

Programs

  • Mathematica
    Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); RealDigits[Cl2[Pi/4] // Re, 10, 105] // First

Formula

Equals 2*Pi*log(G(7/8)/G(1/8)) - 2*Pi*LogGamma(1/8) + (Pi/4) * log(2*Pi/sqrt(2-sqrt(2))), where G is the Barnes G function.

A261026 Decimal expansion of Cl_2(3*Pi/4), where Cl_2 is the Clausen function of order 2.

Original entry on oeis.org

5, 2, 3, 8, 8, 9, 3, 5, 3, 9, 6, 1, 5, 9, 3, 8, 4, 9, 1, 9, 0, 6, 2, 2, 7, 8, 5, 5, 9, 4, 0, 0, 3, 6, 1, 1, 7, 4, 3, 7, 1, 6, 2, 8, 4, 5, 1, 9, 8, 9, 4, 3, 9, 4, 4, 4, 3, 3, 6, 4, 0, 7, 4, 8, 4, 2, 2, 7, 4, 1, 5, 5, 1, 6, 1, 6, 4, 2, 2, 5, 1, 4, 8, 5, 2, 2, 4, 5, 4, 6, 4, 2, 1, 3, 3, 0, 1, 7, 0, 9, 9, 9, 7, 0, 9
Offset: 0

Views

Author

Jean-François Alcover, Aug 07 2015

Keywords

Examples

			0.52388935396159384919062278559400361174371628451989439444336407484...
		

Crossrefs

Cf. A006752 (Cl_2(Pi/2) = Catalan's constant), A143298 (Cl_2(Pi/3) = Gieseking's constant), A261024 (Cl_2(2*Pi/3)), A261025 (Cl_2(Pi/4)), A261027 (Cl_2(Pi/6)), A261028 (Cl_2(5*Pi/6)).

Programs

  • Mathematica
    Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); RealDigits[Cl2[3*Pi/4] // Re, 10, 105] // First

Formula

Equals 2*Pi*log(G(5/8)/G(3/8)) - 2*Pi*LogGamma(3/8) + (3*Pi/4) * log(2*Pi/sqrt(2+sqrt(2))), where G is the Barnes G function.

A244843 Decimal expansion of the integral of log(2+x^2+y^2)/((1+x^2)*(1+y^2)) dx dy over the square [0,1]x[0,1].

Original entry on oeis.org

5, 6, 9, 5, 9, 6, 1, 5, 8, 1, 8, 3, 6, 1, 4, 5, 0, 6, 2, 3, 6, 4, 5, 5, 5, 3, 6, 7, 2, 7, 1, 7, 4, 6, 9, 0, 1, 0, 7, 8, 7, 6, 1, 2, 6, 8, 2, 1, 2, 2, 8, 7, 8, 3, 6, 8, 2, 8, 1, 8, 4, 0, 8, 1, 2, 4, 8, 5, 2, 3, 0, 0, 2, 5, 0, 2, 9, 9, 1, 8, 1, 1, 6, 1, 4, 0, 5, 6, 5, 7, 4, 2, 2, 2, 7, 2, 4, 5, 8, 6, 8
Offset: 0

Views

Author

Jean-François Alcover, Jul 07 2014

Keywords

Comments

The computation of this integral is given by Bailey & Borwein as an example of the use of CAS packages (and additional tools) to simplify large symbolic expressions.

Examples

			0.56959615818361450623645553672717469010787612682122878368281840812485230025...
		

Crossrefs

Cf. A261027 (Cl_2(Pi/6)), A261028 (Cl_2(5*Pi/6)).

Programs

  • Mathematica
    Clausen2[x_] := Im[PolyLog[2, Exp[x*I]]]; Pi^2/8*Log[2] - 7/48*Zeta[3] + 11/24*Pi*Clausen2[Pi/6] - 29/24*Pi*Clausen2[5*Pi/6] // RealDigits[#, 10, 101]& // First
  • PARI
    Cl2(x)=imag(polylog(2,exp(x*I)));
    Pi^2/8*log(2) - 7/48*zeta(3) + 11/24*Pi*Cl2(Pi/6) - 29/24*Pi*Cl2(5*Pi/6) \\ Charles R Greathouse IV, Aug 27 2014

Formula

Pi^2/8*log(2) - 7/48*zeta(3) + 11/24*Pi*Cl2(Pi/6) - 29/24*Pi*Cl2(5*Pi/6), where Cl2 is the Clausen function Cl2(t) = Sum_{n>0} sin(n*t)/n^2.

A340826 Decimal expansion of Cl_2(Pi/5), where Cl_2 is the Clausen function of order 2.

Original entry on oeis.org

9, 2, 3, 7, 5, 5, 1, 6, 8, 1, 0, 0, 5, 3, 5, 3, 0, 8, 7, 1, 1, 9, 8, 6, 0, 2, 9, 7, 9, 3, 0, 2, 4, 3, 5, 3, 9, 6, 6, 2, 7, 9, 0, 0, 6, 4, 1, 2, 5, 1, 7, 2, 5, 1, 7, 0, 7, 7, 1, 2, 8, 4, 8, 3, 2, 5, 1, 5, 0, 9, 8, 3, 3, 2, 5, 3, 0, 9, 7, 5, 7, 2, 8, 7, 2, 8, 3, 2, 2, 1, 8, 0, 1, 1, 2, 2, 5, 9, 9, 9, 6, 2, 6, 3, 5
Offset: 0

Views

Author

Artur Jasinski, Jan 23 2021

Keywords

Examples

			0.9237551681005353087119860297930...
		

Crossrefs

Cf. A006752 (Cl_2(Pi/2) = Catalan's constant), A143298 (Cl_2(Pi/3) = Gieseking's constant), A261025 (Cl_2(Pi/4)), A261026 (Cl_2(3*Pi/4)), A261027 (Cl_2(Pi/6)), A261028 (Cl_2(5*Pi/6)), A340628, A340629.

Programs

  • Mathematica
    Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); RealDigits[Re[Cl2[Pi/5]], 10, 105] // First
    N[Pi*(ArcCsch[2] + Log[2*Pi*BarnesG[9/10]^10 / BarnesG[11/10]^10])/5, 120] (* Vaclav Kotesovec, Jan 23 2021 *)

Formula

A = Cl_2(Pi/5).
B = Cl_2(2*Pi/5).
C = Cl_2(3*Pi/5).
D = Cl_2(4*Pi/5).
4*(A^2 + C^2) = 5*(B^2 + D^2).
B = 2*A - 2*D.
D = 2*B - 2*C.
2*C = 4*A - 5*D.
B = -D + sqrt(A*(2*C+D)+D^2).
B^2 + D^2 = 4*Pi^4/(325*A340628^2).
B^2 + D^2 = (13/1125)*A340629^2*Pi^4.
Equals Pi*(2*log(G(9/10) / G(11/10)) + log(Pi*(1+sqrt(5)))/5), where G is the Barnes G-function. - Vaclav Kotesovec, Jan 23 2021
Showing 1-6 of 6 results.