A261029 Number of ways to write n in the form F(x,y,z) = x^3 + y^3 + z^3 - 3xyz, where 0 <= x <= y <= z and z >= x+1.
0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 1, 2, 0, 1, 1, 0, 1, 1, 2, 3, 1, 0, 1, 2, 0, 1, 2, 1, 1, 1, 0, 2, 1, 0, 1, 2, 1, 1, 1, 0, 2, 1, 0, 2, 1, 3, 1, 3, 0, 1, 1, 0, 1, 1, 1, 3, 2, 0, 1, 2, 0, 2, 1, 2, 1, 1, 0, 2, 2, 0, 1, 2, 3, 1, 1, 0, 1, 1
Offset: 0
Keywords
Links
- Peter J. C. Moses and Chai Wah Wu, Table of n, a(n) for n = 0..10000 (terms for n = 0..999 from Peter J. C. Moses)
- R. D. Carmichael, On the representation of numbers in the form x^3+y^3+z^3-3xyz, Bull. Amer. Math. Soc. 22 (1915), 111-117.
- Peter J. C. Moses, List of triples up to a(2000)
- Vladimir Shevelev, Representation of positive integers by the form x^3+y^3+z^3-3xyz, arXiv:1508.05748 [math.NT], 2015.
Programs
-
Mathematica
r[n_] := Reduce[0 <= x <= y <= z && z >= x+1 && n == x^3 + y^3 + z^3 - 3 x y z, {x, y, z}, Integers]; a[n_] := Which[rn = r[n]; rn === False, 0, rn[[0]] === And, 1, rn[[0]] === Or, Length[rn], True, Print["error ", rn]]; Array[a, 100, 0] (* Jean-François Alcover, Nov 06 2018 *)
Formula
For positive n, a(n)=0, if and only if n == 3 or 6 (mod 9); if p is prime, other than 3, then a(p) = a(2*p) = 1.
For n >= 1, a(8^(n-1)) = n.
Extensions
More terms from Peter J. C. Moses, Aug 22 2015
Comments