A272381 Primes p == 1 (mod 3) for which A261029(10*p) = 2.
7, 13, 19, 31, 37, 73
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
r[n_] := Reduce[0 <= x <= y <= z && z >= x + 1 && n == x^3 + y^3 + z^3 - 3 x y z, {x, y, z}, Integers]; a29[n_] := Which[rn = r[n]; rn === False, 0, rn[[0]] === And, 1, rn[[0]] === Or, Length[rn], True, Print["error ", rn]]; Select[Select[Range[1, 1000, 3], PrimeQ], a29[14 #] == 3&] (* Jean-François Alcover, Nov 21 2018 *)
r[n_] := Reduce[0 <= x <= y <= z && z >= x + 1 && n == x^3 + y^3 + z^3 - 3 x y z, {x, y, z}, Integers]; a29[n_] := Which[rn = r[n]; rn === False, 0, rn[[0]] === And, 1, rn[[0]] === Or, Length[rn], True, Print["error ", rn]]; Select[Select[Range[1, 1000, 3], PrimeQ], a29[22 #] == 2&] (* Jean-François Alcover, Nov 21 2018 *)
r[n_] := Reduce[0 <= x <= y <= z && z >= x + 1 && n == x^3 + y^3 + z^3 - 3 x y z, {x, y, z}, Integers]; a29[n_] := Which[rn = r[n]; rn === False, 0, rn[[0]] === And, 1, rn[[0]] === Or, Length[rn], True, Print["error ", rn]]; Select[Range[1, 997, 3], PrimeQ[#] && a29[26#] == 3&] (* Jean-François Alcover, Nov 06 2018 *)
r[n_] := Reduce[0 <= x <= y <= z && z >= x+1 && n == x^3 + y^3 + z^3 - 3 x y z, {x, y, z}, Integers]; a29[n_] := Which[rn = r[n]; rn === False, 0, rn[[0]] === And, 1, rn[[0]] === Or, Length[rn], True, Print["error ", rn]]; Select[Select[Range[7, 997, 3], PrimeQ], a29[34 #] == 2&] (* Jean-François Alcover, Dec 01 2018 *)
r[n_] := Reduce[0 <= x <= y <= z && z >= x+1 && n == x^3+y^3+z^3 - 3 x y z, {x, y, z}, Integers]; a261029[n_] := Which[rn = r[n]; rn === False, 0, rn[[0]] === And, 1, rn[[0]] === Or, Length[rn], True, Print["error ", rn]]; Select[Select[Range[1, 1171, 3], PrimeQ], a261029[38 #] == 3&] (* Jean-François Alcover, Dec 04 2018 *)
r[n_] := Reduce[0 <= x <= y <= z && z >= x+1 && n == x^3 + y^3 + z^3 - 3 x y z, {x, y, z}, Integers]; a29[n_] := Which[rn = r[n]; rn === False, 0, rn[[0]] === And, 1, rn[[0]] === Or, Length[rn], True, Print["error ", rn]]; Select[Select[Range[1, 2002, 3], PrimeQ], a29[ 46 # ] == 2&] (* Jean-François Alcover, Dec 06 2018 *)
By condition z>=x+1>=1. By induction one can prove that F(x,y,z)>=3*z-2 (cf.[Shevelev]). Since F>=1, then A261029(0)=0 and a(0)=0; Further, x y z F 0 0 1 1 0 1 1 2 Since F(x,y,2)>=4>1, A261029(1)=1 and a(1)=1. 0 0 2 8 0 1 2 9 0 2 2 16 1 1 2 4 1 2 2 5 0 0 3 27 0 1 3 28 0 2 3 35 0 3 3 54 1 1 3 20 1 2 3 18 1 3 3 28 2 2 3 7 2 3 3 8 Since F(x,y,4)>=10>8, A261029(8)=2 and a(2)=8, etc.
r[n_] := Reduce[0 <= x <= y <= z && z >= x + 1 && n == x^3 + y^3 + z^3 - 3 x y z, {x, y, z}, Integers]; a29[n_] := a29[n] = Which[rn = r[n]; rn === False, 0, rn[[0]] === And, 1, rn[[0]] === Or, Length[rn], True, Print["error ", rn]]; a[n_] := For[k=0, True, k++, If[a29[k] == n, Print[n, " ", k]; Return[k]]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 15 2018 *)
Let n=3, then prime(n)=5. Since 5==2(mod 3), then i=2. So a(3) is the number of primes p==1(mod 3) for which A261029(10*p)=4-2=2. So it is number of terms in A272381, i.e., a(3)=6. Let n=4, then prime(n)=7. Since 7==1(mod 3), then i=1. So a(4) is the number of primes p==1(mod 3) for which A261029(14*p)=4-1=3. So it is number of terms in A272382, i.e., a(4)=9.
Let n=3; then prime(n)=5. Since 5 == 2 (mod 3), i=2. So a(3) is the greatest length of a chain of consecutive primes p == 1 (mod 3) for which A261029(10*p) = 4 - 2 = 2. So these primes are in A272381. The first term is 7, and we have the chain of consecutive primes == 1 (mod 3): {7, 13, 19, 31, 37}. Since the following prime 43 == 1 (mod 3) is not in A272381, the chain ends and its length is 5. The second chain is the singleton {71}. So a(3)=5.
a261029[n_]:=a261029[n]={x,y,z}/.{ToRules[Reduce[x^3+y^3+z^3-3 x y z==n&&0<=x<=y<=z&&z>=x+1,Integers]]}/.{x,y,z}->{}; data={}; Do[p=Prime[n]; primes=Select[Prime[Range[1+PrimePi[(2p)^2]]],Mod[#,3]==1&]; tmp=Map[{#,Length[a261029[2 # p]]}&,primes]; AppendTo[data,{{n,2p,1+Mod[2p,3]},{{Length[#],Max[Map[Length,Select[Split[Differences[Flatten[Map[Position[primes,#,1,1]&,#]]]],#[[1]]==1&]]+1]},#}&[Map[#[[1]]&,Select[tmp,#[[2]]==(1+Mod[2p,3])&]]]}];Print[Last[data]],{n,3,10}] Map[Length[a261029[#]]&,Range[0,20]] (* A261029 *) Last[Last[data[[1]]]] (* A272381 *) Last[Last[data[[2]]]] (* A272382 *) Last[Last[data[[3]]]] (* A272384 *) Last[Last[data[[4]]]] (* A272404 *) Last[Last[data[[5]]]] (* A272406 *) Last[Last[data[[6]]]] (* A272407 *) Last[Last[data[[7]]]] (* A272409 *) Map[#[[2]][[1]][[1]]&,data] (* A268665 *) Map[#[[2]][[1]][[2]]&,data] (* A272856 *)
Comments