cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A272856 Greatest length of a chain of consecutive primes p==1 (mod 3) for which A261029 (2*prime(n)*p) is 4-i if prime(n) == i (mod 3), where i=1,2.

Original entry on oeis.org

5, 7, 16, 19, 32, 35, 50, 76, 81, 108, 140, 139, 171, 206, 254, 259, 305, 346, 349, 404, 449, 504, 582, 634, 645, 699, 707, 772, 930, 1006, 1078, 1097, 1258, 1271, 1362, 1448, 1529, 1633, 1737, 1752, 1951, 1970, 2064, 2082, 2310, 2550, 2659, 2672, 2783, 2917
Offset: 3

Views

Author

Keywords

Examples

			Let n=3; then prime(n)=5. Since 5 == 2 (mod 3), i=2. So a(3) is the greatest length of a chain of consecutive primes p == 1 (mod 3) for which A261029(10*p) = 4 - 2 = 2. So these primes are in A272381. The first term is 7, and we have the chain of consecutive primes == 1 (mod 3): {7, 13, 19, 31, 37}. Since the following prime 43 == 1 (mod 3) is not in A272381, the chain ends and its length is 5. The second chain is the singleton {71}. So a(3)=5.
		

Crossrefs

Programs

  • Mathematica
    a261029[n_]:=a261029[n]={x,y,z}/.{ToRules[Reduce[x^3+y^3+z^3-3 x y z==n&&0<=x<=y<=z&&z>=x+1,Integers]]}/.{x,y,z}->{};
    data={};
    Do[p=Prime[n];
    primes=Select[Prime[Range[1+PrimePi[(2p)^2]]],Mod[#,3]==1&];
    tmp=Map[{#,Length[a261029[2 # p]]}&,primes];
    AppendTo[data,{{n,2p,1+Mod[2p,3]},{{Length[#],Max[Map[Length,Select[Split[Differences[Flatten[Map[Position[primes,#,1,1]&,#]]]],#[[1]]==1&]]+1]},#}&[Map[#[[1]]&,Select[tmp,#[[2]]==(1+Mod[2p,3])&]]]}];Print[Last[data]],{n,3,10}]
    Map[Length[a261029[#]]&,Range[0,20]] (* A261029 *)
    Last[Last[data[[1]]]] (* A272381 *)
    Last[Last[data[[2]]]] (* A272382 *)
    Last[Last[data[[3]]]] (* A272384 *)
    Last[Last[data[[4]]]] (* A272404 *)
    Last[Last[data[[5]]]] (* A272406 *)
    Last[Last[data[[6]]]] (* A272407 *)
    Last[Last[data[[7]]]] (* A272409 *)
    Map[#[[2]][[1]][[1]]&,data] (* A268665 *)
    Map[#[[2]][[1]][[2]]&,data] (* A272856 *)
Showing 1-1 of 1 results.