A272382 Primes p == 1 (mod 3) for which A261029(14*p) = 3.
13, 19, 31, 37, 43, 61, 67, 97, 157
Offset: 1
Links
- Vladimir Shevelev, Representation of positive integers by the form x^3+y^3+z^3-3xyz, arXiv:1508.05748 [math.NT], 2015.
Programs
-
Mathematica
r[n_] := Reduce[0 <= x <= y <= z && z >= x + 1 && n == x^3 + y^3 + z^3 - 3 x y z, {x, y, z}, Integers]; a29[n_] := Which[rn = r[n]; rn === False, 0, rn[[0]] === And, 1, rn[[0]] === Or, Length[rn], True, Print["error ", rn]]; Select[Select[Range[1, 1000, 3], PrimeQ], a29[14 #] == 3&] (* Jean-François Alcover, Nov 21 2018 *)
Comments