A261060 Number of solutions to c(1)*prime(3) + ... + c(2n)*prime(2n+2) = -2, where c(i) = +-1 for i > 1, c(1) = 1.
1, 0, 2, 1, 9, 22, 38, 143, 676, 1815, 7434, 22452, 87485, 290873, 1092072, 3894381, 13988849, 49672279, 184745525, 677809709, 2495632892, 9260315018, 34280441347, 127419049587, 474867366809, 1781565475308, 6700749901259, 25230023849115, 95215110677472
Offset: 1
Keywords
Examples
a(1) = 1 because prime(3) - prime(4) = -2. a(2) = 0 because prime(3) +- prime(4) +- prime(5) +- prime(6) is different from -2 for any choice of the signs. a(3) = 2 counts the two solutions prime(3) - prime(4) + prime(5) - prime(6) - prime(7) + prime(8) = 5 - 7 + 11 - 13 - 17 + 19 = -2 and prime(3) - prime(4) - prime(5) + prime(6) + prime(7) - prime(8) = 5 - 7 - 11 + 13 + 17 - 19 = -2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..300
Crossrefs
Programs
-
Maple
s:= proc(n) option remember; `if`(n<4, 0, ithprime(n)+s(n-1)) end: b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=3, 1, b(abs(n-ithprime(i)),i-1)+b(n+ithprime(i),i-1))) end: a:= n-> b(7, 2*n+2): seq(a(n), n=1..30); # Alois P. Heinz, Aug 08 2015
-
Mathematica
s[n_] := s[n] = If[n<4, 0, Prime[n]+s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 3, 1, b[Abs[n-Prime[i]], i-1]+b[n+Prime[i], i-1]]]; a[n_] := b[7, 2*n+2]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
-
PARI
a(n,rhs=-2,firstprime=3)={rhs-=prime(firstprime);my(p=vector(2*n-2+bittest(rhs,0),i,prime(i+firstprime)));sum(i=1,2^#p-1,sum(j=1,#p,(-1)^bittest(i,j-1)*p[j])==rhs)} \\ For illustrative purpose; too slow for n >> 10.
Formula
a(n) = [x^7] Product_{k=4..2*n+2} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 31 2024
Extensions
a(14)-a(29) from Alois P. Heinz, Aug 08 2015
Comments