cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A261061 Number of solutions to c(1)*prime(1)+...+c(2n)*prime(2n) = -1, where c(i) = +-1 for i > 1, c(1) = 1.

Original entry on oeis.org

1, 0, 2, 3, 8, 23, 68, 221, 709, 2344, 8006, 27585, 95114, 335645, 1202053, 4267640, 15317698, 55248527, 200711160, 733697248, 2696576651, 9941588060, 36928160817, 136800727634, 508780005068, 1901946851732, 7133247301621, 26782446410398, 100862459737318
Offset: 1

Views

Author

M. F. Hasler, Aug 08 2015

Keywords

Comments

There cannot be a solution for an odd number of terms on the l.h.s. because there would be an even number of odd terms but the r.h.s. is odd.

Examples

			a(1) = 1 counts the solution prime(1) - prime(2) = -1.
a(2) = 0 because prime(1) +- prime(2) +- prime(3) +- prime(4) is always different from -1.
a(3) = 2 counts the two solutions prime(1) - prime(2) + prime(3) - prime(4) - prime(5) + prime(6) = -1 and prime(1) - prime(2) - prime(3) + prime(4) + prime(5) - prime(6) = -1.
		

Crossrefs

Cf. A261062 - A261063 and A261044 (starting with prime(2), prime(3) resp. prime(4)), A022894 - A022904, A083309, A022920 (r.h.s. = 0, 1 or 2), A261057, A261059, A261060, A261045 (r.h.s. = -2).

Programs

  • Maple
    s:= proc(n) option remember;
          `if`(n<2, 0, ithprime(n)+s(n-1))
        end:
    b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=1, 1,
          b(abs(n-ithprime(i)), i-1)+b(n+ithprime(i), i-1)))
        end:
    a:= n-> b(3, 2*n):
    seq(a(n), n=1..30);  # Alois P. Heinz, Aug 08 2015
  • Mathematica
    s[n_] := s[n] = If[n<2, 0, Prime[n]+s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 1, 1, b[Abs[n-Prime[i]], i-1] + b[n+Prime[i], i-1]]]; a[n_] := b[3, 2*n]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
  • PARI
    A261061(n,rhs=-1,firstprime=1)={rhs-=prime(firstprime);my(p=vector(2*n-2+bittest(rhs,0),i,prime(i+firstprime)));sum(i=1,2^#p-1,sum(j=1,#p,(-1)^bittest(i,j-1)*p[j])==rhs)} \\ For illustrative purpose; too slow for n >> 10.

Formula

Conjecture: limit_{n->infinity} a(n)^(1/n) = 4. - Vaclav Kotesovec, Jun 05 2019
a(n) = [x^3] Product_{k=2..2*n} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 31 2024

Extensions

a(14)-a(29) from Alois P. Heinz, Aug 08 2015

A261063 Number of solutions to c(1)*prime(3) + ... + c(2n-1)*prime(2n+1) = -1, where c(i) = +-1 for i > 1, c(1) = 1.

Original entry on oeis.org

0, 0, 0, 1, 6, 8, 40, 67, 373, 1232, 3330, 13656, 47111, 164957, 582042, 1967152, 7129046, 26655235, 94956602, 353789267, 1300061367, 4765080122, 17726643505, 66038899483, 245431428625, 919911458949, 3457983108462, 12974054097333, 49016641868213, 185510228030858
Offset: 1

Views

Author

M. F. Hasler, Aug 08 2015

Keywords

Comments

There cannot be a solution for an even number of terms on the l.h.s. because all terms are odd but the r.h.s. is odd, too.

Examples

			a(1) = a(2) = 0 because prime(3) and prime(3) +- prime(4) +- prime(5) are different from -1 for any choice of the signs.
a(3) = 0 because the same sums prime(3) +- ... +- prime(7) is also always different from -1 for any choice of the signs.
a(4) = 1 because prime(3) - prime(4) - prime(5) - prime(6) - prime(7) + prime(8) + prime(9) = -1 is the only solution.
		

Crossrefs

Cf. A261061 - A261062 (starting with prime(1) resp. prime(2)), A261044 (starting with prime(4)), A022894 - A022904, A083309, A022920 (r.h.s. = 0, 1 or 2), A261057, A261059, A261060, A261045 (r.h.s. = -2).

Programs

  • Maple
    s:= proc(n) option remember;
          `if`(n<4, 0, ithprime(n)+s(n-1))
        end:
    b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=3, 1,
          b(abs(n-ithprime(i)),i-1)+b(n+ithprime(i),i-1)))
        end:
    a:= n-> b(6, 2*n+1):
    seq(a(n), n=1..30);  # Alois P. Heinz, Aug 08 2015
  • Mathematica
    s[n_] := s[n] = If[n<4, 0, Prime[n]+s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 3, 1, b[Abs[n-Prime[i]], i-1] + b[n+Prime[i], i-1]]]; a[n_] := b[6, 2*n+1]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
  • PARI
    A261063(n,rhs=-1,firstprime=3)={rhs-=prime(firstprime);my(p=vector(2*n-2+bittest(rhs,0),i,prime(i+firstprime)));sum(i=1,2^#p-1,sum(j=1,#p,(-1)^bittest(i,j-1)*p[j])==rhs)} \\ For illustrative purpose; too slow for n >> 10.

Formula

a(n) = [x^6] Product_{k=4..2*n+1} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 31 2024

Extensions

a(15)-a(30) from Alois P. Heinz, Aug 08 2015
Showing 1-2 of 2 results.