cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261073 Semiprimes whose prime factors are of equal binary length and which differ from each other in one bit position only.

Original entry on oeis.org

6, 35, 323, 437, 713, 899, 1763, 1961, 2021, 2537, 3233, 4757, 5561, 5609, 6497, 7313, 9797, 10403, 10961, 11009, 18209, 19043, 21353, 22499, 23393, 26969, 27221, 29177, 37001, 38021, 39203, 45113, 71273, 72899, 79523, 87953, 95477, 98201, 99221, 106793, 114857, 114929, 123353
Offset: 1

Views

Author

Antti Karttunen, Sep 22 2015

Keywords

Examples

			6 = 2*3 is present, as 2 in binary is "10" and 3 in binary is "11", so both have two (significant) bits and they differ only in one bit-position from each other.
35 = 5*7 is present, as 5 in binary is "101" and 7 in binary is "111", which both have three bits, differing only in the middle position from each other.
		

Crossrefs

Cf. also A261074, A261075.
Cf. A071697 (a subsequence).
Intersection of A085721 and A261077.

Programs

  • Mathematica
    Select[Range[10^6], And[Length@ # == 2, IntegerLength[#1, 2] == IntegerLength[#2, 2] & @@ #, Total@ BitXor[IntegerDigits[#1, 2], IntegerDigits[#2, 2]] == 1 & @@ #] &@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger@ #] &] (* Michael De Vlieger, Oct 08 2016 *)
  • PARI
    A000523 = n -> logint(n, 2);
    A020639(n) = if(1==n,n,vecmin(factor(n)[, 1]));
    isA261073(n) = { my(a,b); if(bigomega(n)!=2, 0, a=A020639(n); b = (n/a); ((A000523(a) == A000523(b)) && (1 == norml2(binary(bitxor(a,b)))))); };
    i=0; n=0; while(i < 5000, n++; if(isA261073(n), i++; write("b261073.txt", i, " ", n)));
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A261073 (MATCHING-POS 1 1 (lambda (n) (and (= 2 (A001222 n)) (= (A000523 (A020639 n)) (A000523 (A006530 n))) (= 1 (A101080bi (A020639 n) (A006530 n)))))))