A261088 Number of steps needed to reach zero when starting from k = n^2 and repeatedly applying the map that replaces k with k - d(k), where d(k) is the number of divisors of k (A000005).
0, 1, 2, 3, 5, 6, 10, 10, 19, 15, 19, 21, 24, 28, 39, 33, 53, 44, 49, 53, 60, 61, 69, 72, 79, 82, 92, 93, 117, 108, 115, 115, 140, 121, 174, 146, 205, 155, 233, 217, 267, 192, 295, 209, 225, 222, 238, 249, 267, 270, 299, 290, 336, 313, 373, 328, 411, 347, 451, 380, 486, 400, 534, 422, 447, 441, 460, 460, 511, 479, 496, 504, 545, 529, 602, 553, 579, 577, 626, 612, 681, 632, 747, 665, 796, 695
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..5792
Programs
-
Mathematica
f[n_]:=Length[NestWhileList[#-DivisorSigma[0,#]&,n^2,#!= 0&]]-1;f/@Range[0,85] (* Ivan N. Ianakiev, Sep 25 2015 *)
-
PARI
allocatemem((2^31)+(2^30)); uplim = 2^25; v155043 = vector(uplim); v155043[1] = 1; v155043[2] = 1; for(i=3, uplim, v155043[i] = 1 + v155043[i-numdiv(i)]; if(!(i%65536),print1(i,", "));); A155043 = n -> if(!n,n,v155043[n]); A261088 = n -> A155043(n^2); for(n=0, 5792, write("b261088.txt", n, " ", A261088(n)));
-
Scheme
(define (A261088 n) (A155043 (A000290 n)))