cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261089 a(n) = least k such that A155043(k) = n; positions of records in A155043.

Original entry on oeis.org

0, 1, 3, 5, 7, 13, 17, 19, 23, 27, 29, 31, 35, 37, 41, 43, 51, 53, 57, 59, 61, 65, 67, 71, 73, 77, 79, 143, 149, 151, 155, 157, 161, 163, 173, 177, 179, 181, 185, 191, 193, 199, 203, 209, 211, 215, 219, 223, 231, 233, 237, 239, 241, 249, 251, 263, 267, 269, 271, 277, 285, 291, 293, 299, 303, 315, 317, 321, 327, 331, 335, 337, 341, 347, 349, 357, 359, 369, 515
Offset: 0

Views

Author

Antti Karttunen, Sep 23 2015

Keywords

Comments

Note that there are even terms besides 0, and they all seem to be squares: a(915) = 7744 (= 88^2), a(41844) = 611524 (= 782^2), a(58264) = 872356 (= 934^2), a(66936) = 1020100 (= 1010^2), a(95309) = 1503076 (= 1226^2), a(105456) = 1653796 (= 1286^2), ...

Crossrefs

Cf. A262503 (the last occurrence of n in A155043).
Cf. A262505 (difference between the last and the first occurrence).
Cf. A262507 (the number of occurrences of n in A155043).
Cf also A261085, A261088.

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a261089 = fromJust . (`elemIndex` a155043_list)
    -- Reinhard Zumkeller, Nov 27 2015
  • Mathematica
    lim = 80; a[0] = 0; a[n_] := a[n] = 1 + a[n - DivisorSigma[0, n]]; t = Table[a@ n, {n, 0, 12 lim}]; Table[First@ Flatten@ Position[t, n] - 1, {n, 0, lim}] (* Michael De Vlieger, Sep 29 2015 *)
  • PARI
    allocatemem(123456789);
    uplim = 2162160; \\ = A002182(41).
    v155043 = vector(uplim);
    v155043[1] = 1; v155043[2] = 1;
    for(i=3, uplim, v155043[i] = 1 + v155043[i-numdiv(i)]);
    A155043 = n -> if(!n,n,v155043[n]);
    n=0; k=0; while(k <= 10000, if(A155043(n)==k, write("b261089.txt", k, " ", n); k++); n++;);
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library, two variants.
    (definec (A261089 n) (let loop ((k 0)) (if (= n (A155043 k)) k (loop (+ 1 k)))))
    (define A261089 (RECORD-POS 0 0 A155043))
    

Formula

Other identities. For all n >= 0:
A155043(a(n)) = n.