cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261119 Expansion of f(x^2, -x^4) * f(x, x^5)^2 / f(-x^12, -x^12) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 2, 2, 0, 0, 1, 2, 4, 0, 0, 0, 0, 4, 2, 2, 0, 0, 3, 2, 2, 2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 3, 2, 4, 2, 0, 0, 0, 6, 2, 0, 0, 0, 0, 2, 4, 0, 0, 0, 2, 2, 2, 4, 0, 0, 1, 0, 2, 0, 0, 0, 0, 2, 6, 2, 0, 0, 2, 4, 0, 2, 0, 0, 4, 4, 0, 0, 0, 0, 0, 4, 2
Offset: 0

Views

Author

Michael Somos, Aug 08 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 2*x^2 + 2*x^3 + x^6 + 2*x^7 + 4*x^8 + 4*x^13 + 2*x^14 + ...
G.f. = q^3 + 2*q^7 + 2*q^11 + 2*q^15 + q^27 + 2*q^31 + 4*q^35 + 4*q^55 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 3}, (-1)^n DivisorSum[ m, KroneckerSymbol[ 12, #] KroneckerSymbol[ -2, m/#] &]]]; (* Michael Somos, Dec 22 2016 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A)^2 * eta(x^4 + A) * eta(x^24 + A) / (eta(x + A)^2 * eta(x^6 + A)^2 * eta(x^8 + A)), n))};
    
  • PARI
    a(n) = my(m = 4*n+3); (-1)^n*sumdiv(m, d, kronecker(12, d) * kronecker(-2, m/d)); \\ Michel Marcus, Dec 13 2017

Formula

Expansion of f(x^2, x^6) * f(x, x^5)^2 / f(x^4, x^8) in powers of x where f(,) is Ramanujan'sgeneral theta function.
Expansion of q^(-3/4) * eta(q^2)^3 * eta(q^3)^2 * eta(q^4) * eta(q^24) / (eta(q)^2 * eta(q^6)^2 * eta(q^8)) in powers of q.
Euler transform of period 24 sequence [ 2, -1, 0, -2, 2, -1, 2, -1, 0, -1, 2, -2, 2, -1, 0, -1, 2, -1, 2, -2, 0, -1, 2, -2, ...].
a(n) = (-1)^n * A257921(n) = A129402(2*n + 1) = A261118(3*n + 2) = A192013(4*n + 3) = A000377(4*n + 3).
a(2*n) = A257920(n). a(2*n + 1) = 2 * A259896(n). a(3*n) = A261118(n).