A261120 The number of distinct triple points in the set of function values FLSN(m/6/7^n), m in 0, 1, 2... 6*7^n, where FLSN:[0,1] is the "flowsnake" plane filling curve.
2, 17, 134, 989, 7082, 50057, 351854, 2467349, 17284562, 121031297, 847337174, 5931714509, 41523064442, 290664639737, 2034662044094, 14242663006469, 99698727138722, 697891348251377, 4885240212600614, 34196683812727229, 239376793662659402, 1675637576559322217
Offset: 1
Examples
Define one particular snowflake, or slowfake, or flowsnake on [0,1] with values: FLSN(m/6) = {{0, 0}, {1/2, -Sqrt[3]/6}, {4/7, 2 Sqrt[3]/7}, {1/6, Sqrt[3]/6}, {1/2, Sqrt[3]/2}, {1, Sqrt[3]/3}, {1, 0}}. There exists a(1) = 2 triple points when the denominator is 42 = 6*7: FLSN(5/42) = FLSN(11/42) = FLSN(17/42) = {3/7, Sqrt[3]/21}, FLSN(13/42) = FLSN(31/42) = FLSN(37/42) = {5/7, 4 Sqrt[3]/21}.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- M. Beeler, R. W. Gosper, and R. Schroeppel, HAKMEM, (1972), Item 115.
- B. Klee, A Pit of Flowsnakes, Complex Systems, 24, 4 (2015).
- B. Klee, Flowsnake Q-Function, Wolfram Demonstrations(2015).
- Index entries for linear recurrences with constant coefficients, signature (11,-31,21).
Programs
-
Magma
[1/14*(7-7*3^n+6*7^n): n in [1..25]]; // Vincenzo Librandi, Aug 10 2015
-
Maple
A261120:=n->(7-7*3^n+6*7^n)/14: seq(A261120(n), n=1..30); # Wesley Ivan Hurt, Aug 27 2015
-
Mathematica
1/14 (7 - 7*3^# + 6*7^#) & /@ Range[1, 20] LinearRecurrence[{11, -31, 21}, {2, 17, 134}, 20]
-
PARI
Vec(-x*(9*x^2-5*x+2)/((x-1)*(3*x-1)*(7*x-1)) + O(x^30)) \\ Colin Barker, Aug 17 2015
Formula
t(0)=1, e(n)=v(n)=a(n)=0,
t(n)= 7 t(n-1),
e(n)= 12 t(n-1)+ 3 e(n-1),
v(n)= 6 t(n-1) + 2 e(n-1) + v(n-1),
a(n)= 2 t(n-1) + 1/2 v(n-1).
G.f.: 1/14 (7/(1 - x) - 7/(1 - 3 x) + 6/(1 - 7 x)).
From Colin Barker, Aug 17 2015: (Start)
a(n) = (7-7*3^n+6*7^n)/14.
a(n) = 11*a(n-1)-31*a(n-2)+21*a(n-3) for n>3.
G.f.: -x*(9*x^2-5*x+2) / ((x-1)*(3*x-1)*(7*x-1)).
(End)
Comments