A261136 Primes p such that prime(p)-p+1 = prime(q) for some prime q.
3, 7, 71, 103, 173, 211, 271, 293, 1117, 1451, 1531, 1753, 1787, 1801, 2089, 2239, 2341, 2371, 2713, 2999, 3019, 3779, 3881, 3917, 4159, 4447, 4513, 4591, 4969, 5107, 5483, 5573, 5591, 5701, 5813, 5867, 6011, 6271, 6311, 6361, 6397, 6427, 7243, 8467, 8513, 9157, 9343, 9433, 9719, 10103
Offset: 1
Keywords
Examples
a(1) = 3 since prime(3)-3+1 = 5-3+1 = prime(2) with 3 and 2 both prime. a(3) = 71 since prime(71)-71+1 = 353-70 = 283 = prime(61) with 71 and 61 both prime.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
f[n_]:=Prime[Prime[n]]-Prime[n]+1 PQ[p_]:=PrimeQ[p]&&PrimeQ[PrimePi[p]] n=0;Do[If[PQ[f[k]],n=n+1;Print[n," ",Prime[k]]],{k,1,1241}] prQ[x_]:=Module[{c=Prime[x]-x+1},AllTrue[{c,PrimePi[c]},PrimeQ]]; Select[Prime[ Range[ 2000]],prQ] (* Harvey P. Dale, Apr 27 2023 *)
Comments